Women in Noncommutative Algebra and Representation Theory Workshop 3
非交换代数和表示论中的女性研讨会 3
基本信息
- 批准号:2203108
- 负责人:
- 金额:$ 1.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the participation of US-based researchers in the workshop WINART3, Women in Noncommutative Algebra and Representation Theory, held at the Banff International Research Station, Banff, Canada on April 3-8, 2022. The goal of the workshop is to bring together experts and junior participants working in these fields to collaborate on research projects, and its primary focus is to facilitate research activities. There will be eight research groups consisting of four to six participants, each led by two research leaders. Each group will come to the workshop with a prepared plan and project and spend most of the workshop working on their respective projects. The workshop will also feature several introductory, as well as more advanced, talks, and professional development activities. This structure was very successful in previous workshops in the series: WINART1 in 2016 and WINART2 in 2019.The fields of noncommutative algebra and representation theory have long been closely intertwined, but even more so since the emergence of quantum groups in the 1980s. The results in these fields have been significant in their own right and also have had a strong influence in shaping other fields such as conformal field theory, the study of operator algebras, string theory, topological field theory, and the various forms of noncommutative geometry. There will be a variety of research topics present at the WINART3 workshop: cluster theory, Hopf algebras and their representation theory, weak Hopf algebras and their actions on algebras, infinite-dimensional Lie theory, and Hochschild cohomology. The workshop website is: https://women-in-ncalg-repthy.org/conferences/winart3-workshop/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国研究人员参加2022年4月3日至8日在加拿大班夫班夫国际研究站举行的WINART3研讨会,非交换代数和表示论中的女性。讲习班的目标是汇集在这些领域工作的专家和初级参与者,就研究项目进行合作,其主要重点是促进研究活动。将有八个研究小组,由四到六名参与者组成,每个小组由两名研究负责人领导。每个小组都将带着准备好的计划和项目参加研讨会,并将研讨会的大部分时间用于各自的项目。研讨会还将包括几个介绍性的,以及更先进的,会谈和专业发展活动。这种结构在该系列的前几次研讨会上非常成功:2016年的WINART1和2019年的WINART2。非交换代数和表示论领域长期以来一直紧密交织在一起,但自从20世纪80年代量子群出现以来,情况就更加如此。在这些领域的结果已显着在自己的权利,也有很大的影响,在塑造其他领域,如共形场论,研究算子代数,弦理论,拓扑场论,和各种形式的非交换几何。WINART3研讨会将讨论各种研究主题:集群理论,Hopf代数及其表示理论,弱Hopf代数及其在代数上的作用,无限维李理论和Hochschild上同调。研讨会的网站是:https://women-in-ncalg-repthy.org/conferences/winart3-workshop/This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordana Todorov其他文献
Fixed-point property of random quotients of plain words
普通词随机商的定点性质
- DOI:
10.4171/ggd/257 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Osamu Iyama;Idun Reiten;Gordana Todorov;Hugh Thomas;Hiroyasu Izeki - 通讯作者:
Hiroyasu Izeki
Gordana Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordana Todorov', 18)}}的其他基金
Conference: Maurice Auslander Distinguished Lectures and International Conference
会议:莫里斯·奥斯兰德杰出讲座和国际会议
- 批准号:
2305107 - 财政年份:2023
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Maurice Auslander Distinguished Lectures and International Conference
莫里斯·奥斯兰德杰出讲座和国际会议
- 批准号:
1818413 - 财政年份:2018
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Maurice Auslander International Conference
莫里斯·奥斯兰德国际会议
- 批准号:
1521103 - 财政年份:2015
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Maurice Auslander International Conference
莫里斯·奥斯兰德国际会议
- 批准号:
1162304 - 财政年份:2012
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Cluster algebras: theory and applications
簇代数:理论与应用
- 批准号:
1103813 - 财政年份:2011
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Research in noncommutative and commutative algebra
非交换代数和交换代数研究
- 批准号:
0901185 - 财政年份:2009
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Representation Theory of Artin Algebras
数学科学:Artin代数表示论
- 批准号:
9009590 - 财政年份:1990
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory of Artin Algebras and Orders
数学科学:Artin代数和阶的表示论
- 批准号:
8402618 - 财政年份:1984
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
相似海外基金
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 1.35万 - 项目类别:
Continuing Grant
Geometric Insights in Noncommutative Algebra
非交换代数中的几何见解
- 批准号:
2201273 - 财政年份:2022
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Noncommutative Functions, Algebra and Operator Analysis
非交换函数、代数和算子分析
- 批准号:
2155033 - 财政年份:2022
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
- 批准号:
1953148 - 财政年份:2020
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Expanding representation in Noncommutative Algebra and Representation Theory: WINART2 Workshop
扩展非交换代数和表示论中的表示:WINART2 研讨会
- 批准号:
1900575 - 财政年份:2019
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Reflection Groups in Noncommutative Algebra
非交换代数中的反射群
- 批准号:
2324043 - 财政年份:2019
- 资助金额:
$ 1.35万 - 项目类别:
Studentship
Recent Developments in Noncommutative Algebra and Related Areas
非交换代数及相关领域的最新进展
- 批准号:
1764210 - 财政年份:2018
- 资助金额:
$ 1.35万 - 项目类别:
Standard Grant
Enhancing Representation Theory, Noncommutative Algebra And Geometry Through Moduli, Stability And Deformations
通过模数、稳定性和变形增强表示理论、非交换代数和几何
- 批准号:
EP/R034826/1 - 财政年份:2018
- 资助金额:
$ 1.35万 - 项目类别:
Research Grant