Partial Differential Equations in Several Complex Variables

多个复变量的偏微分方程

基本信息

  • 批准号:
    1700003
  • 负责人:
  • 金额:
    $ 20.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Complex analysis in one and several variables plays a special role in mathematics and mathematical physics. The use of complex numbers has been essential in the development of mathematics. Partial differential equations and several complex variables are employed in string theory and twistor theory, physical theories that try to unify different physical force fields. The existence and regularity of solutions to such partial differential equations are still not fully understood, and they form some of the most challenging problems in mathematical analysis. The current study is not only important for the development of mathematics, but it may lead to new understanding of physical phenomena as well, with potential applications in other sciences and technology. This research focuses on some of the most important equations in several complex variables, the Cauchy-Riemann equations and the induced tangential Cauchy-Riemann equations. The topics investigated in this research project include function theory on complex manifolds, Hausdorff property of Dolbeault cohomology groups, Levi-flat hypersurfaces and complex foliation, and the Cauchy-Riemann operators on complex projective spaces and negatively curved manifolds. Understanding the geometric aspects of these equations under the curvature conditions and their relations with function theory in complex manifolds is a challenging and important problem. New approaches have been introduced to study these problems which connect the topology of domains in complex manifolds with the topology of Dolbeault cohomology groups. The study of several complex variables in a geometric setting has provided interesting new questions with fresh insight to problems in topology, foliation theory, complex dynamics, algebraic and complex geometry. This project aims to deepen understanding in this area.
一元和多元复变分析在数学和数学物理中有着特殊的作用。 复数的使用在数学的发展中是必不可少的。 偏微分方程和多复变量在弦理论和扭量理论中被使用,这些物理理论试图统一不同的物理力场。 这些偏微分方程解的存在性和规律性仍然没有完全理解,它们构成了数学分析中一些最具挑战性的问题。 目前的研究不仅对数学的发展很重要,而且可能导致对物理现象的新理解,并在其他科学和技术中具有潜在的应用。 本文主要研究了多复变函数中最重要的几类方程,即Cauchy-Riemann方程和导出的切向Cauchy-Riemann方程。 本研究课题包括复流形上的函数理论、Dolbeault上同调群的Hausdorff性质、Levi-平坦超曲面和复叶理、复射影空间和负曲流形上的Cauchy-Riemann算子。 理解这些方程在曲率条件下的几何方面以及它们与复流形中函数论的关系是一个具有挑战性的重要问题。 新的研究方法将复流形中整环的拓扑与Dolbeault上同调群的拓扑联系起来。 在几何环境中的几个复变量的研究提供了有趣的新问题,具有新的见解,拓扑学,叶理理论,复杂的动力学,代数和复杂的几何问题。 该项目旨在加深对这一领域的了解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hearing pseudoconvexity in Lipschitz domains with holes via $${\bar{\partial }}$$ ∂ ¯
通过 $${ar{partial }}$$ 聆听带有孔的 Lipschitz 域中的伪凸性 â �
  • DOI:
    10.1007/s00209-017-1863-6
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Fu, Siqi;Laurent-Thiébaut, Christine;Shaw, Mei-Chi
  • 通讯作者:
    Shaw, Mei-Chi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei-Chi Shaw其他文献

Local existence theorems with estimates for ∂b on weakly pseudo-convex CR manifolds
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L 2 existence theorems for the $$\bar \partial _b - Neumann$$ problem on strongly pseudoconvex CR manifoldsproblem on strongly pseudoconvex CR manifolds
  • DOI:
    10.1007/bf02938117
  • 发表时间:
    1991-06-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
L2 estimates and existence theorems for the tangential Cauchy-Riemann complex
  • DOI:
    10.1007/bf01394783
  • 发表时间:
    1985-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
Local existence theorems with estimates for $$\bar \partial _b $$ on weakly pseudo-convex CR manifolds
  • DOI:
    10.1007/bf01934348
  • 发表时间:
    1992-12
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw
$C^\infty$ -regularity of solutions of the tangential CR-equations on weakly pseudoconvex manifolds
  • DOI:
    10.1007/s002080050181
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Joachim Michel;Mei-Chi Shaw
  • 通讯作者:
    Mei-Chi Shaw

Mei-Chi Shaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei-Chi Shaw', 18)}}的其他基金

Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1954347
  • 财政年份:
    2020
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Conference on Complex Geometry and Several Complex Variables
复杂几何与多复变量会议
  • 批准号:
    1800478
  • 财政年份:
    2018
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    1362175
  • 财政年份:
    2014
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
INTERNATIONAL CONFERENCE ON NEVANLINNA THEORY and COMPLEX GEOMETRY
NEVANLINNA 理论和复杂几何国际会议
  • 批准号:
    1142200
  • 财政年份:
    2012
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
  • 批准号:
    1101415
  • 财政年份:
    2011
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0801200
  • 财政年份:
    2008
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0500672
  • 财政年份:
    2005
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Several Complex Variables
多个复变量的偏微分方程
  • 批准号:
    0100492
  • 财政年份:
    2001
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
  • 批准号:
    9801091
  • 财政年份:
    1998
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和多个复变量
  • 批准号:
    9424122
  • 财政年份:
    1995
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了