Geometric Partial Differential Equations and Complex Geometry

几何偏微分方程和复几何

基本信息

  • 批准号:
    1903147
  • 负责人:
  • 金额:
    $ 22.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project is concerned with the study of problems of geometric nature, often involving the curvature of a space or object, using primarily tools from partial differential equations. This is a central field in mathematics, which has ramifications and connections in physics and other sciences. One of the main themes of this research is the study of a class of spaces, known as Calabi-Yau, which play an important role in mathematics as well as high energy theoretical physics. According to string theory, our four-dimensional physical space-time possesses six extra dimensions which are extremely small, so that we don't normally perceive them, but are crucial for understanding elementary particles. These six dimensions together form a tiny Calabi-Yau space, which captures essential features of particle physics. Understanding its geometry would allow us to understand how particles are created and how they interact, and is one of the main current problems in mathematical physics. The PI will use techniques from geometric analysis and nonlinear partial differential equations to investigate problems about the geometry of complex and symplectic manifolds. The first project is about understanding limits of Ricci-flat Calabi-Yau manifolds as the Kahler class degenerates. This is closely related to the theory of mirror symmetry, which was inspired by physical considerations. The second project concerns the long-time behavior of the Ricci flow on compact Kahler manifolds, in the most difficult case when collapsing occurs at infinite time. The Ricci flow was used spectacularly to prove the Poincare and Geometrization conjectures for 3-manifolds, and understanding its behavior on higher-dimensional manifolds is a central problem in the field. The third project is centered on Donaldson's program to extend Yau's solution of the Calabi Conjecture in Kahler geometry to symplectic four-manifolds. This would provide a new analytic tool to construct symplectic forms four-manifolds as solutions of a highly nonlinear PDE, and would have striking applications in symplectic topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目主要研究几何性质的问题,通常涉及空间或物体的曲率,主要使用偏微分方程组中的工具。这是数学中的一个中心领域,在物理学和其他科学中有分支和联系。这项研究的主要主题之一是研究一类被称为Calabi-Yau的空间,它在数学和高能理论物理中发挥着重要作用。根据弦理论,我们的四维物理时空拥有六个额外的维度,这些维度非常小,所以我们通常不会感知它们,但对理解基本粒子至关重要。这六个维度共同构成了一个微小的卡拉比-尤空间,它捕捉到了粒子物理学的基本特征。了解它的几何结构将使我们能够了解粒子是如何产生的,以及它们是如何相互作用的,这是当前数学物理中的主要问题之一。PI将使用几何分析和非线性偏微分方程的技术来研究关于复流形和辛流形的几何问题。第一个项目是关于理解当Kahler类退化时Ricci-Flat Calabi-Yau流形的极限。这与镜面对称理论密切相关,镜面对称理论的灵感来自于物理方面的考虑。第二个项目涉及紧致Kahler流形上Ricci流的长时间行为,在最困难的情况下,无限时间发生坍塌。Ricci流被用来证明三维流形上的Poincare猜想和几何猜想,而理解它在高维流形上的行为是该领域的一个中心问题。第三个项目是以Donaldson的程序为中心,将Kahler几何中Calabi猜想的Yau解推广到辛四维流形。这将提供一种新的分析工具来构造辛形式的四维流形作为高度非线性偏微分方程组的解,并在辛拓扑中具有显著的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher-order estimates for collapsing Calabi–Yau metrics
  • DOI:
    10.4310/cjm.2020.v8.n4.a1
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Hein;Valentino Tosatti
  • 通讯作者:
    H. Hein;Valentino Tosatti
Kummer rigidity for K3 surface automorphisms via Ricci-flat metrics
通过 Ricci 平坦度量计算 K3 表面自同构的 Kummer 刚度
  • DOI:
    10.1353/ajm.2021.0036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Filip, Simion;Tosatti, Valentino
  • 通讯作者:
    Tosatti, Valentino
Ricci-flat metrics and dynamics on K3 surfaces
K3 表面上的 Ricci 平坦指标和动态
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valentino Tosatti其他文献

Diameter bounds for degenerating Calabi–Yau metrics
退化 Calabi-Yau 度量的直径界限
  • DOI:
    10.4310/jdg/1717772422
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yang Li;Valentino Tosatti
  • 通讯作者:
    Valentino Tosatti
The Calabi-Yau equation, symplectic forms and almost complex structures
卡拉比-丘方程、辛形式和近复结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valentino Tosatti;B. Weinkove
  • 通讯作者:
    B. Weinkove
Corrigendum to "Convergence of curve shortening flow to translating soliton"
“曲线缩短流与平移孤子的收敛性”的勘误表
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Beomjun Choi;K. Choi;P. Daskalopoulos;Oran Gannot;Jared Wunsch;Andrew Corbett;Huabin Ge;Bobo Hua;Ze Zhou;Simion Filip;Valentino Tosatti;F. Plinio;Ioannis Parissis;Paolo Aluffi;Zihua Guo;Kenji Nakanishi;Asher Auel;Alessandro Bigazzi;C. Böhning;H. G. Bothmer;Dimitrios Ntalampekos;Matthew Romney
  • 通讯作者:
    Matthew Romney
Restricted volumes on Kähler manifolds
Kähler 歧管的容量限制
Smooth and Rough Positive Currents
平滑和粗糙的正电流
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simion Filip;Valentino Tosatti
  • 通讯作者:
    Valentino Tosatti

Valentino Tosatti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valentino Tosatti', 18)}}的其他基金

Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Continuing Grant
Geometric Analysis on Complex Manifolds
复杂流形的几何分析
  • 批准号:
    1610278
  • 财政年份:
    2016
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Continuing Grant
Geometry and Analysis on Calabi-Yau and Hermitian Manifolds
Calabi-Yau 和 Hermitian 流形的几何与分析
  • 批准号:
    1308988
  • 财政年份:
    2013
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Great Lakes Geometry Conference 2013
2013 年五大湖几何会议
  • 批准号:
    1301714
  • 财政年份:
    2012
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
  • 批准号:
    1236969
  • 财政年份:
    2012
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Partial Differential Equations on Complex and Symplectic Manifolds
复流形和辛流形上的偏微分方程
  • 批准号:
    1005457
  • 财政年份:
    2010
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
  • 批准号:
    DE230100954
  • 财政年份:
    2023
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Discovery Early Career Researcher Award
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
  • 批准号:
    2208373
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Standard Grant
Geometric Analysis: Investigating the Einstein Equations and Other Partial Differential Equations
几何分析:研究爱因斯坦方程和其他偏微分方程
  • 批准号:
    2204182
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 22.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了