Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
基本信息
- 批准号:1711439
- 负责人:
- 金额:$ 19.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research work focuses on a number of open problems and developing programs on canonical metrics in Kahler geometry, geometric flows, and complex Monge-Ampere equations in relation to geometry and physics. Recent progress and influx of new ideas have unraveled a deep, rich, and unifying structure among analysis, partial differential equations, complex Riemannian geometry, and algebraic geometry. The project also aims to bring in research and teaching innovation in mathematics from various disciplines and have an immediate beneficial effect on undergraduate and graduate students at Rutgers as well as in the regional mathematical community. The principal investigator will continue to organize and participate in the integrated research/education programs and activities that will promote the education level of the nation. Furthermore, the principal investigator plans to disseminate the exciting frontier research at the interface of analysis and geometry to a broad audience through lectures and survey papers.These projects will investigate canonical metrics of Einstein type on Kahler varieties with mild singularities. In particular, the principal investigator will study the Riemannian geometric properties of such singular metrics and analytic moduli problems for Kahler-Einstein manifolds. The PI will continue to make progress in the analytic minimal model program with Ricci flow by studying both the finite time and long time formation of singularities of the Kahler-Ricci flow on algebraic varieties. Such singularity formation is reflected by canonical geometric surgeries equivalent to birational transformations and should be understood through global and local metric uniformization. The PI willy employ new theories and techniques from L^2-theory, nonlinear PDEs and Cheeger-Colding theory. The research will develop new tools and give profound insights and understanding of topological, geometric and algebraic structures of complex spaces.
拟议的研究工作集中在一些开放的问题和规范度量Kahler几何,几何流,复杂的蒙赫-安培方程的几何和物理的发展计划。最近的进展和新思想的涌入已经揭开了一个深刻的,丰富的,统一的结构之间的分析,偏微分方程,复杂的黎曼几何和代数几何。该项目还旨在从各个学科引入数学研究和教学创新,并对罗格斯大学的本科生和研究生以及区域数学界产生直接的有益影响。主要研究者将继续组织和参与综合研究/教育计划和活动,以提高国家的教育水平。此外,首席研究员计划通过讲座和调查论文向广大受众传播分析和几何界面上令人兴奋的前沿研究。这些项目将研究具有轻度奇点的Kahler簇上的爱因斯坦型正则度量。特别是,首席研究员将研究黎曼几何性质的奇异度量和解析模问题的Kahler-Einstein流形。PI将继续通过研究代数簇上Kahler-Ricci流的有限时间和长时间奇点的形成,在Ricci流的分析最小模型程序中取得进展。这种奇异性的形成反映了典型的几何手术相当于双有理变换,并应通过全球和当地的度量均匀化理解。PI将采用L^2-理论、非线性偏微分方程和Cheeger-Colding理论等新的理论和技术。 该研究将开发新的工具,并对复杂空间的拓扑,几何和代数结构给予深刻的见解和理解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metric rigidity of Kahler manifolds with lower Ricci bounds and almost maximal volume.
具有下里奇界和几乎最大体积的卡勒流形的公制刚性。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Ved Datar, Harish Seshadri
- 通讯作者:Ved Datar, Harish Seshadri
Positivity of Weil–Petersson currents on canonical models
- DOI:10.4310/pamq.2021.v17.n3.a9
- 发表时间:2021
- 期刊:
- 影响因子:0.7
- 作者:B. Guo;Jian-Wei Song
- 通讯作者:B. Guo;Jian-Wei Song
Schauder estimates for equations with cone metrics, I
具有圆锥度量的方程的 Schauder 估计,I
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Bin Guo, Jian Song
- 通讯作者:Bin Guo, Jian Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Song其他文献
Elevated pervaporative desulfurization performance of Pebax®-Ag+@MOFs hybrid membranes by integrating multiple transport mechanisms
通过集成多种传输机制提高 Pebax®-Ag @MOFs 杂化膜的渗透蒸发脱硫性能
- DOI:
10.1021/acs.iecr.9b03064 - 发表时间:
2019 - 期刊:
- 影响因子:4.2
- 作者:
Ye Zhang;Zhongyi Jiang;Jing Song;Jian Song;Fusheng Pan;Peng Zhang;Xingzhong Cao - 通讯作者:
Xingzhong Cao
Bandwidth Efficiency Maximization for Single-Cell Massive Spatial Modulation MIMO: An Adaptive Power Allocation Perspective
单小区大规模空间调制 MIMO 的带宽效率最大化:自适应功率分配视角
- DOI:
10.1109/access.2017.2668420 - 发表时间:
2017-02 - 期刊:
- 影响因子:3.9
- 作者:
Longzhuang He;Jintao Wang;Jian Song;Lajos Hanzo - 通讯作者:
Lajos Hanzo
Modification and application of Relap5 Mod3 code to several types of nonwater‐cooled advanced nuclear reactors
Relap5 Mod3代码在几种类型非水冷先进核反应堆上的修改及应用
- DOI:
10.1002/er.3949 - 发表时间:
2018-01 - 期刊:
- 影响因子:4.6
- 作者:
Limin Liu;Dalin Zhang;Jian Song;Chenglong Wang;Xinli Gao;Wenxi Tian;Suizheng Qiu;G.H. Su - 通讯作者:
G.H. Su
(2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method
(2 1) 具有完全科里奥利力的维罗斯贝波及其同伦摄动法解
- DOI:
10.1016/j.camwa.2017.02.036 - 发表时间:
2017-05 - 期刊:
- 影响因子:0
- 作者:
Ruigang Zhang;Liangui Yang;Jian Song;Hongli Yang - 通讯作者:
Hongli Yang
High performance Nb/TiNi nanocomposites produced by packaged accumulative roll bonding
通过封装累积辊压粘合生产高性能 Nb/TiNi 纳米复合材料
- DOI:
10.1016/j.compositesb.2020.108403 - 发表时间:
2020-12 - 期刊:
- 影响因子:0
- 作者:
Daqiang Jiang;Jian Song;Hong Yang;Yinong Liu;Xiaohua Jiang;Yang Ren;Kaiyuan Yu;Lishan Cui - 通讯作者:
Lishan Cui
Jian Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Song', 18)}}的其他基金
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 19.21万 - 项目类别:
Continuing Grant
Canonical Metrics, Geometric Flows and Formation of Singularities
规范度量、几何流和奇点的形成
- 批准号:
1406124 - 财政年份:2014
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
CAREER: Canonical metrics, complex Monge-Ampere equations and geometric flows
职业:规范度量、复杂的 Monge-Ampere 方程和几何流
- 批准号:
0847524 - 财政年份:2009
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
- 批准号:
0808631 - 财政年份:2007
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Nonlinear Geo metric Equations of Monge-Ampere Type and Canonical Metrics
Monge-Ampere型非线性几何方程与正则度量
- 批准号:
0604805 - 财政年份:2006
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
相似海外基金
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 19.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1945869 - 财政年份:2019
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
- 批准号:
19J01482 - 财政年份:2019
- 资助金额:
$ 19.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
- 批准号:
18K13389 - 财政年份:2018
- 资助金额:
$ 19.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1710500 - 财政年份:2017
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Canonical metrics on Kahler and Riemannian manifolds and their moduli
卡勒和黎曼流形及其模的规范度量
- 批准号:
1609335 - 财政年份:2016
- 资助金额:
$ 19.21万 - 项目类别:
Continuing Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
- 批准号:
1306298 - 财政年份:2013
- 资助金额:
$ 19.21万 - 项目类别:
Standard Grant
Canonical metrics on Kahler manifolds and Monge-Ampere equations
卡勒流形和 Monge-Ampere 方程的规范度量
- 批准号:
DE120101167 - 财政年份:2012
- 资助金额:
$ 19.21万 - 项目类别:
Discovery Early Career Researcher Award
Canonical Kahler metrics, algebro-geometric stability and Sasakian geometry
规范卡勒度量、代数几何稳定性和 Sasakian 几何
- 批准号:
24540098 - 财政年份:2012
- 资助金额:
$ 19.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




