Nonlocal Reaction-Diffusion Equations and Wasserstein Gradient Flows
非局部反应扩散方程和 Wasserstein 梯度流
基本信息
- 批准号:2204722
- 负责人:
- 金额:$ 23.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Partial differential equations arise throughout science and engineering as models of biological and physical phenomena. This project concerns the theoretical and numerical analysis of an important class of equations, including ones that model the development of cancer tumors, describe the growth and spread of living organisms’ populations, and underlie certain algorithms for robotic swarms. The results are expected to shed light on the mechanisms driving these phenomena and have potential for application in medicine and engineering. The project has an interdisciplinary component, provides mentoring and training opportunities for undergraduate and graduate students, and includes outreach in the community to promote STEM disciplines among new generations. The research will focus on three main interconnected topics: (1) the study of qualitative properties of solutions to nonlocal reaction-diffusion equations arising in biology and ecology; (2) the development and convergence analysis of deterministic particle methods for partial differential equations, with an emphasis of their adaptation to robotic swarming, made in collaboration with engineers; and (3) the theory of gradient flows on the space of measures. A main aim of the project is to extend the gradient flow formulation to nonlocal partial differential equations and to partial differential equations, such as reaction-diffusion equations, that are not mass-preserving. The project will also lead to the development, implementation, and study of numerical methods for both local and nonlocal equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程作为生物和物理现象的模型出现在整个科学和工程领域。该项目涉及一类重要方程的理论和数值分析,包括模拟癌症肿瘤发展的方程,描述生物体种群的生长和扩散,以及机器人群的某些算法的基础。这些结果有望揭示驱动这些现象的机制,并具有在医学和工程中应用的潜力。该项目有一个跨学科的组成部分,为本科生和研究生提供指导和培训机会,并包括在社区中推广STEM学科。研究将集中在三个主要的相互关联的主题:(1)在生物学和生态学中产生的非局部反应扩散方程的解的定性性质的研究;(2)偏微分方程的确定性粒子方法的发展和收敛性分析,重点是它们对机器人群集的适应,与工程师合作;(3)测度空间上的梯度流理论。该项目的一个主要目的是将梯度流公式扩展到非局部偏微分方程和偏微分方程,如反应扩散方程,这不是质量守恒的。该项目还将导致本地和非本地方程的数值方法的开发,实施和研究。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Turanova其他文献
Nonlocal approximation of slow and fast diffusion
慢扩散和快扩散的非局部近似
- DOI:
10.1016/j.jde.2025.01.035 - 发表时间:
2025-05-05 - 期刊:
- 影响因子:2.300
- 作者:
Katy Craig;Matt Jacobs;Olga Turanova - 通讯作者:
Olga Turanova
Well-posedness for viscosity solutions of the one-phase Muskat problem in all dimensions
所有维度下单相 Muskat 问题粘度解的适定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Russell Schwab;Son Tu;Olga Turanova - 通讯作者:
Olga Turanova
Olga Turanova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Turanova', 18)}}的其他基金
Nonlinear and Nonlocal Partial Differential Equations
非线性和非局部偏微分方程
- 批准号:
1907221 - 财政年份:2019
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 23.08万 - 项目类别:
Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 23.08万 - 项目类别:
Continuing Grant
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
- 批准号:
23H00506 - 财政年份:2023
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Reaction-Diffusion Kinetics with Tensor Networks
职业:张量网络的反应扩散动力学
- 批准号:
2239867 - 财政年份:2023
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalising Reaction-Diffusion and Turing Patterning Systems
概括反应扩散和图灵图案系统
- 批准号:
2747341 - 财政年份:2022
- 资助金额:
$ 23.08万 - 项目类别:
Studentship
On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
- 批准号:
22K03369 - 财政年份:2022
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
- 批准号:
22K13954 - 财政年份:2022
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists