Critical Phenomena in Coherent Structure Formation

相干结构形成的关键现象

基本信息

  • 批准号:
    2205663
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Large complex dynamical systems often self-organize into simple coherent behavior. Describing, analyzing, and computing the dynamics of these self-organized structures is at the center of understanding processes ranging from crystallization, self-assembly, or material hardening, to the emergence of patterns and function in living organisms. The principal investigator (PI) studies the role of coherent structures both in organizing the dynamics of systems through the selection of patterns and shape, but also in their role for validating models through quantitative predictions. The first part of the project is concerned with invasion processes, where a new structure propagates in the system after a sudden change in parameters. This invasion process is poorly understood and computationally challenging. The PI will develop new analytical and computational tools to systematically analyze, predict, and thus validate models. The second part of the project is concerned with point defects that arise in soft matter. Point defects both organize the system dynamics, but also present challenges to macroscopic, homogenized descriptions of large systems. The proposed work further develops analytical and computational methods that aim at a fine description of the shape of the core of point defects and their effect on the medium far away from the core. Graduate and undergraduate students will be engaged in the research of the project.The PI will analyze invasion fronts and point defects. Invasion fronts describe the propagation into an unstable state across many scientific areas, from material science to ecology and epidemiology. Propagation speeds and the novel state created in the wake of the invasion process can often be well predicted from linear analysis at the unstable state, through a marginal pointwise stability analysis. The PI will first develop novel computational tools for the associated linear questions, complemented by a rigorous convergence analysis. In a second step, the PI will addresse the validity of these linear predictions in nonlinear systems, in particular questions associated with the marginal stability conjecture that postulates that critical, only marginally stable fronts are selected in the invasion process. A second part of the proposal studies dislocations in striped phases and creases in elastic media. In both situations, analysis of the existence of these point defects will yield a deeper understanding of the role of the core of the defect in the large-scale deformation of the medium. The interaction between core and farfield is analyzed using analytical, perturbative tools and computational methods that rely on rigorous approximations of unbounded by finite-size domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型复杂动力系统通常会自组织成简单的相干行为。描述,分析和计算这些自组织结构的动力学是理解从结晶,自组装或材料硬化到生物体中模式和功能出现的过程的中心。主要研究员(PI)研究相干结构在通过选择模式和形状来组织系统动态方面的作用,以及通过定量预测来验证模型的作用。该项目的第一部分是关于入侵过程,其中一个新的结构在参数突然变化后在系统中传播。这个入侵过程是知之甚少,计算上的挑战。PI将开发新的分析和计算工具,以系统地分析,预测,从而验证模型。该项目的第二部分是关于软物质中出现的点缺陷。点缺陷既组织了系统动力学,也对宏观的、均匀化的大系统描述提出了挑战。所提出的工作进一步发展的分析和计算方法,旨在一个精细的描述点缺陷的核心的形状和它们对远离核心的介质的影响。研究生和本科生将参与该项目的研究。PI将分析入侵前沿和点缺陷。入侵前沿描述了从材料科学到生态学和流行病学等许多科学领域的不稳定状态的传播。传播速度和新的状态创建后的入侵过程中,往往可以很好地预测从线性分析的不稳定状态,通过一个边缘逐点稳定性分析。PI将首先为相关的线性问题开发新的计算工具,并辅以严格的收敛分析。在第二步中,PI将解决这些线性预测在非线性系统中的有效性,特别是与边缘稳定性猜想相关的问题,该猜想假设在入侵过程中选择了临界的,只有边缘稳定的前沿。该提案的第二部分研究了弹性介质中条纹相和折痕中的位错。在这两种情况下,分析这些点缺陷的存在将产生更深入的理解的作用,在大规模变形的介质中的缺陷的核心。核心和远场之间的相互作用是使用分析,微扰工具和计算方法,依赖于严格的近似无界的有限尺寸domain.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coherent structures in nonlocal systems --- functional analytic tools
非局部系统中的相干结构——函数分析工具
  • DOI:
    10.48550/arxiv.2206.11921
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cannon, Olivia;Scheel, Arnd
  • 通讯作者:
    Scheel, Arnd
Fronts in the Wake of a Parameter Ramp: Slow Passage through Pitchfork and Fold Bifurcations
参数斜坡之后的前沿:缓慢穿过干草叉和折叠分叉
Nonlinear Eigenvalue Methods for Linear Pointwise Stability of Nonlinear Waves
非线性波线性逐点稳定性的非线性特征值方法
Pushed-to-Pulled Front Transitions: Continuation, Speed Scalings, and Hidden Monotonicty
推拉前端转换:延续、速度缩放和隐藏单调性
  • DOI:
    10.1007/s00332-023-09957-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Avery, Montie;Holzer, Matt;Scheel, Arnd
  • 通讯作者:
    Scheel, Arnd
Viscous shocks and long-time behavior of scalar conservation laws
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arnd Scheel其他文献

Solitary waves and their linear stability in weakly coupled KdV equations
Wavenumber selection in coupled transport equations
  • DOI:
    10.1007/s00285-017-1107-8
  • 发表时间:
    2017-02-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Arnd Scheel;Angela Stevens
  • 通讯作者:
    Angela Stevens
Finite-Wavelength Stability¶of Capillary-Gravity Solitary Waves
Center-manifold reduction for spiral waves
  • DOI:
    10.1016/s0764-4442(99)80335-8
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Björn Sandstede;Arnd Scheel;Claudia Wulff
  • 通讯作者:
    Claudia Wulff
Erratum to: Triggered Fronts in the Complex Ginzburg Landau Equation
  • DOI:
    10.1007/s00332-016-9338-1
  • 发表时间:
    2016-10-13
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Ryan Goh;Arnd Scheel
  • 通讯作者:
    Arnd Scheel

Arnd Scheel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arnd Scheel', 18)}}的其他基金

Patterns, Geometry, and Growth
图案、几何形状和生长
  • 批准号:
    1907391
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Pattern Selection: Growth, Fronts, and Defects
模式选择:生长、前沿和缺陷
  • 批准号:
    1612441
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Pattern and wavenumber selection in the wake of fronts
锋面后的模式和波数选择
  • 批准号:
    1311740
  • 财政年份:
    2013
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Dynamics near Turing patterns: modulations, bifurcations, and defects
图灵模式附近的动力学:调制、分叉和缺陷
  • 批准号:
    0806614
  • 财政年份:
    2008
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Coherent Structures: Interaction and Propagation of Defects
相干结构:缺陷的相互作用和传播
  • 批准号:
    0504271
  • 财政年份:
    2005
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Absolute and essential instabilities in spatially extended systems
合作研究:空间扩展系统中的绝对和本质不稳定性
  • 批准号:
    0203301
  • 财政年份:
    2002
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Spin-dependent quantum coherent phenomena in ferromagnet/layered superconductor hybrids
铁磁体/层状超导体混合体中自旋相关的量子相干现象
  • 批准号:
    19K05244
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
  • 批准号:
    1822215
  • 财政年份:
    2018
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Magnetism in Complex Materials: Coherent and Cooperative Phenomena
职业:复杂材料中的超快磁性:相干和协作现象
  • 批准号:
    1055352
  • 财政年份:
    2011
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Photon-assisted quantum coherent phenomena in graphene n-p and n-p-n junctions. Quantum transport in graphene based arrays of nanocrystals
石墨烯 n-p 和 n-p-n 结中的光子辅助量子相干现象。
  • 批准号:
    173138112
  • 财政年份:
    2010
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Priority Programmes
Quantum Coherent Phenomena in Superconducting Heterostructures
超导异质结构中的量子相干现象
  • 批准号:
    1006445
  • 财政年份:
    2010
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Effects of resonant coupling on terahertz-range coherent phenomena in semiconductor superlattices
谐振耦合对半导体超晶格太赫兹范围相干现象的影响
  • 批准号:
    22740203
  • 财政年份:
    2010
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Improvement of Mid-Latitude Atmospheric Predictions Using Coherent Tropical Convective Phenomena
利用相干热带对流现象改进中纬度大气预测
  • 批准号:
    0806721
  • 财政年份:
    2008
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Study of Coherent Phenomena in Quantum Hall Systems
量子霍尔系统相干现象的研究
  • 批准号:
    18204029
  • 财政年份:
    2006
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
COHERENT PHENOMENA IN ULTRAFAST BIOLOGICAL PROCESSES
超快生物过程中的连贯现象
  • 批准号:
    7373135
  • 财政年份:
    2006
  • 资助金额:
    $ 28.5万
  • 项目类别:
Charge and heat transport through molecules: The role of coherent excitations, molecular wire heat ratchets, shot noise for heat and charge, thermoelectric phenomena, electron-phonon interaction, vibrational modes, exciton-assisted transport
通过分子的电荷和热传输:相干激发的作用、分子线热棘轮、热和电荷的散粒噪声、热电现象、电子-声子相互作用、振动模式、激子辅助传输
  • 批准号:
    25188102
  • 财政年份:
    2006
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了