Patterns, Geometry, and Growth

图案、几何形状和生长

基本信息

  • 批准号:
    1907391
  • 负责人:
  • 金额:
    $ 47.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Many physical systems spontaneously self-organize in regular patterns. Without external control, they evolve into almost crystalline states showing stripes or spots aligned in somewhat regular fashions. Examples range from the self-organizational processes in early developmental states of the embryo to phase separation dynamics in manufacturing processes such as dip-coating. In order to control those processes and possibly harvest the self-organizational capabilities for the manufacturing of micro-structured materials, one needs to understand how the patterning is influenced by parameters and system geometry. The investigator focuses on a particularly relevant situation in which patterns arise through a directional quenching process where the patterned region expands in space, either in an externally controlled fashion, or in a self-organized growth process. It turns out that the result of patterning is very rigid, across many physical and biological contexts, in the sense that the final pattern is robust against imperfections and reproducible from many different initial states of the experiment. The final pattern does however depend sensitively on growth rates and quenching geometry. The investigator and his collaborators develop analytic and numerical tools that enable systematic prediction and control of resulting patterns, with the ultimate goal of designing processes that result in a desired, pre-specified pattern. Graduate students are engaged in the research of the project.The investigator and his collaborators analyze prototypical systems such as the Swift-Hohenberg or the Cahn-Hilliard equation in situations where the pattern-forming region expands in time at a prescribed rate. In the simplest case, these systems develop striped patterns with a fixed wavelength and orientation relative to the direction of growth. Numerical tools developed for this scenario allow for a systematic exploration of the relation between parameters and resulting orientations and wavelengths. Analytic tools can guide the numerics by exhibiting universal mechanisms such as pinning and detachment of structures. Analysis also complements numerical studies in limiting regimes where computational cost is prohibitively high. Both analysis and numerics focus on the study of coherent structures, which are the simplest pattern-forming dynamic states of the system. They are typically stationary or time-periodic in a frame moving with the quenching interface, and asymptotic to a selected pattern in the pattern-forming region. The first part of the project focuses on the formation of stripes, or lamellar crystals, in simple model problems, where the growth process roughly selects an orientation angle of stripes relative to the boundary. The second part broadens the scope by including more realistic models, different growth laws, and different preferred crystalline states. Graduate students are engaged in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理系统自发地以规则的模式自组织。在没有外部控制的情况下,它们进化成几乎是晶体的状态,显示出以某种规则的方式排列的条纹或斑点。例子范围从胚胎早期发育状态的自组织过程到生产过程中的相分离动力学,如浸渍涂层。为了控制这些过程并可能获得制造微结构材料的自组织能力,需要了解图案如何受到参数和系统几何形状的影响。研究者专注于一种特别相关的情况,在这种情况下,图案通过定向淬火过程产生,其中图案区域在空间中扩展,要么以外部控制的方式,要么以自组织的生长过程。事实证明,在许多物理和生物环境中,模式的结果是非常严格的,因为最终的模式是坚固的,可以抵抗缺陷,并且可以从许多不同的实验初始状态中重现。然而,最终的图案确实敏感地取决于生长速率和淬火几何形状。研究者和他的合作者开发了分析和数值工具,能够系统地预测和控制产生的模式,最终目标是设计产生期望的、预先指定的模式的过程。研究生从事该项目的研究。研究者和他的合作者分析了典型的系统,如斯威夫特-霍恩伯格方程或卡恩-希利亚德方程,在这种情况下,模式形成区域以规定的速度在时间上膨胀。在最简单的情况下,这些系统形成具有固定波长和相对于生长方向的方向的条纹图案。为这种情况开发的数值工具允许系统地探索参数与结果方向和波长之间的关系。分析工具可以通过展示结构的钉住和分离等普遍机制来指导数值。分析还补充了在计算成本过高的限制条件下的数值研究。分析和数值都集中在相干结构的研究上,这是系统最简单的形成模式的动态状态。它们在随淬灭界面移动的框架中通常是静止的或时间周期性的,并且在模式形成区域中渐近于选定的模式。该项目的第一部分侧重于简单模型问题中条纹或片层晶体的形成,其中生长过程大致选择条纹相对于边界的方向角。第二部分通过纳入更现实的模型、不同的生长规律和不同的优选晶态来扩大范围。研究生从事该项目的研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pushed-to-Pulled Front Transitions: Continuation, Speed Scalings, and Hidden Monotonicty
推拉前端转换:延续、速度缩放和隐藏单调性
  • DOI:
    10.1007/s00332-023-09957-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Avery, Montie;Holzer, Matt;Scheel, Arnd
  • 通讯作者:
    Scheel, Arnd
Instability in large bounded domains—branched versus unbranched resonances
大有界域中的不稳定性——支化共振与非支化共振
  • DOI:
    10.1088/1361-6544/ac2a15
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Avery, Montie;Dedina, Cedric;Smith, Aislinn;Scheel, Arnd
  • 通讯作者:
    Scheel, Arnd
Sharp Decay Rates for Localized Perturbations to the Critical Front in the Ginzburg–Landau Equation
GinzburgâLandau 方程中临界前沿局部扰动的急剧衰减率
Asymptotic Stability of Critical Pulled Fronts via Resolvent Expansions Near the Essential Spectrum
通过基本谱附近的分辨展开实现临界拉锋的渐近稳定性
Spiral Waves: Linear and Nonlinear Theory
螺旋波:线性和非线性理论
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arnd Scheel其他文献

Solitary waves and their linear stability in weakly coupled KdV equations
Wavenumber selection in coupled transport equations
  • DOI:
    10.1007/s00285-017-1107-8
  • 发表时间:
    2017-02-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Arnd Scheel;Angela Stevens
  • 通讯作者:
    Angela Stevens
Finite-Wavelength Stability¶of Capillary-Gravity Solitary Waves
Center-manifold reduction for spiral waves
  • DOI:
    10.1016/s0764-4442(99)80335-8
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Björn Sandstede;Arnd Scheel;Claudia Wulff
  • 通讯作者:
    Claudia Wulff
Erratum to: Triggered Fronts in the Complex Ginzburg Landau Equation
  • DOI:
    10.1007/s00332-016-9338-1
  • 发表时间:
    2016-10-13
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Ryan Goh;Arnd Scheel
  • 通讯作者:
    Arnd Scheel

Arnd Scheel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arnd Scheel', 18)}}的其他基金

Critical Phenomena in Coherent Structure Formation
相干结构形成的关键现象
  • 批准号:
    2205663
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
Pattern Selection: Growth, Fronts, and Defects
模式选择:生长、前沿和缺陷
  • 批准号:
    1612441
  • 财政年份:
    2016
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
Pattern and wavenumber selection in the wake of fronts
锋面后的模式和波数选择
  • 批准号:
    1311740
  • 财政年份:
    2013
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
Dynamics near Turing patterns: modulations, bifurcations, and defects
图灵模式附近的动力学:调制、分叉和缺陷
  • 批准号:
    0806614
  • 财政年份:
    2008
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
Coherent Structures: Interaction and Propagation of Defects
相干结构:缺陷的相互作用和传播
  • 批准号:
    0504271
  • 财政年份:
    2005
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Absolute and essential instabilities in spatially extended systems
合作研究:空间扩展系统中的绝对和本质不稳定性
  • 批准号:
    0203301
  • 财政年份:
    2002
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Plant geometry - understanding the molecular basis of gravitropism and growth angle control
植物几何学 - 了解向地性和生长角度控制的分子基础
  • 批准号:
    2602609
  • 财政年份:
    2021
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Studentship
Geometry of the braid groups and mapping class groups and their growth
辫子组的几何形状和映射类组及其增长
  • 批准号:
    18K03283
  • 财政年份:
    2018
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The role of cell geometry, growth and mechanics in plant cell division.
细胞几何形状、生长和力学在植物细胞分裂中的作用。
  • 批准号:
    357135584
  • 财政年份:
    2017
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Research Units
Modeling and Simulation of Irradiance for Photobioreactors with Complex Geometry for Exploration of Algal Growth
用于探索藻类生长的复杂几何光生物反应器的辐照度建模和模拟
  • 批准号:
    322739165
  • 财政年份:
    2017
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Research Grants
Growth, Gap, and Geometry
增长、差距和几何
  • 批准号:
    1611758
  • 财政年份:
    2016
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
A Multiscale Approach to Genes Growth and Geometry
基因生长和几何形状的多尺度方法
  • 批准号:
    BB/F005555/1
  • 财政年份:
    2008
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Research Grant
A Multiscale Approach to Genes Growth and Geometry
基因生长和几何形状的多尺度方法
  • 批准号:
    BB/F005997/1
  • 财政年份:
    2008
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Research Grant
Development of Quantifiable Heat Transport Control for Crystal Growth and Segregation in Ezochralski Geometry: Doped Germanium
Ezochralski 几何中晶体生长和偏析的可量化热传输控制的发展:掺杂锗
  • 批准号:
    9221156
  • 财政年份:
    1993
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing grant
Functional equations, cellular automata and fractal geometry in chemical growth and evolutionary processess
化学生长和进化过程中的函数方程、元胞自动机和分形几何
  • 批准号:
    261-1990
  • 财政年份:
    1992
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Bifurcation From Infinity for Semilinear Elliptic Partial Differential Equations: The Influence of Nonlinear Growth and Domain Geometry
数学科学:半线性椭圆偏微分方程的无穷大分岔:非线性增长和域几何的影响
  • 批准号:
    9201006
  • 财政年份:
    1992
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了