Quantum Symmetries of Topological Phases of Matter

物质拓扑相的量子对称性

基本信息

  • 批准号:
    2205962
  • 负责人:
  • 金额:
    $ 19.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Ordinary phases of matter (gas, liquid, solid) are distinguished by their symmetries: transformations that leave them unchanged--for example a ninety degree rotation of a cubic solid. Exotic quantum states of matter present under extreme conditions (low temperatures, strong magnetic fields) exhibit symmetries that resist a simple geometric description. Rather, their symmetries are understood through topology: qualitative geometry in which angles and lengths are ignored. The study of topological states is as important for their application to quantum technologies as for understanding the physical world. Of particular interest are the applications in quantum information. The investigator will study the mathematical symmetries of these topological phases of matter for the purpose of classifying and distinguishing them, probing their properties, and understanding how they are related through phase transitions. Some emphasis will be on how the properties of these phases of matter might find utility in quantum technologies. The investigator will employ theoretical and computational methods to study mathematical models for topological phases of matter. While two-dimensional topological phases of matter have been well-studied, many important questions remain. Three-dimensional systems with topological features are playing an increasingly substantial role yet are not as well-studied from a rigorous mathematical perspective. Two key themes in quantum symmetries are braided fusion categories and motion group representations: the first models the topologically invariant features of topological phases of matter, and the second encodes the topological dynamics of anyons and loop-like excitations. Understanding how the models are related through symmetries and phase transitions will provide a clearer picture of the landscape of topological phases of matter. In a complementary direction, the investigator will develop methods to understand the physically relevant representations of the braid group and higher dimensional generalizations. In three dimensions there is tension between the sensitivity of the topological invariants and the physically motivated assumption of unitarity. This challenge will be met through the study of non-semisimple categories and representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物质的普通相态(气、液、固)以它们的对称性来区分,即不改变它们的变化——例如,一个立方固体旋转90度。在极端条件下(低温、强磁场)物质的奇异量子态表现出的对称性无法用简单的几何描述。相反,它们的对称性是通过拓扑来理解的:在拓扑中,角度和长度被忽略。拓扑态的研究对于量子技术的应用和对物理世界的理解同样重要。特别令人感兴趣的是在量子信息中的应用。研究者将研究这些物质拓扑相的数学对称性,以便对它们进行分类和区分,探测它们的性质,并了解它们如何通过相变相互关联。一些重点将放在物质的这些相的性质如何在量子技术中找到效用。研究者将采用理论和计算方法来研究物质拓扑相的数学模型。虽然物质的二维拓扑相已经得到了很好的研究,但许多重要的问题仍然存在。具有拓扑特征的三维系统正发挥着越来越重要的作用,但从严格的数学角度来看,还没有得到很好的研究。量子对称性的两个关键主题是编织融合类别和运动群表示:第一个模型描述了物质拓扑相的拓扑不变特征,第二个编码了任意子和环状激励的拓扑动力学。了解这些模型是如何通过对称和相变联系起来的,将为物质的拓扑相提供更清晰的图景。在一个互补的方向上,研究者将开发方法来理解辫群的物理相关表示和更高维度的概括。在三维空间中,拓扑不变量的敏感性与物理动机的统一性假设之间存在张力。这一挑战将通过对非半简单类别和表示的研究来解决。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstructing braided subcategories of SU(N)
重建 SU(N) 的编织子类别
  • DOI:
    10.1016/j.jalgebra.2023.08.005
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Feng, Zhaobidan;Ming, Shuang;Rowell, Eric C.
  • 通讯作者:
    Rowell, Eric C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Rowell其他文献

Wildfire Fuels Mapping through Artificial Intelligence-based Methods: A Review
基于人工智能方法的野火燃料制图:综述
  • DOI:
    10.1016/j.earscirev.2025.105064
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Riyaaz Uddien Shaik;Mohamad Alipour;Kasra Shamsaei;Eric Rowell;Bharathan Balaji;Adam Watts;Branko Kosovic;Hamed Ebrahimian;Ertugrul Taciroglu
  • 通讯作者:
    Ertugrul Taciroglu
FUELVISION: A Multimodal Data Fusion and Multimodel Ensemble Algorithm for Wildfire Fuels Mapping
FUELVISION:用于野火燃料测绘的多模态​​数据融合和多模型集成算法
  • DOI:
    10.48550/arxiv.2403.15462
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Shaik;Mohamad Alipour;Eric Rowell;Bharathan Balaji;Adam Watts;E. Taciroğlu
  • 通讯作者:
    E. Taciroğlu
Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests
评估近距离摄影测量以实现松林 3D 林下燃料表征和生物量预测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Gina R. Cova;S. Prichard;Eric Rowell;Brian Drye;P. Eagle;Maureen C. Kennedy;Deborah G. Nemens
  • 通讯作者:
    Deborah G. Nemens
On Classification of Modular Tensor Categories
  • DOI:
    10.1007/s00220-009-0908-z
  • 发表时间:
    2009-08-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Eric Rowell;Richard Stong;Zhenghan Wang
  • 通讯作者:
    Zhenghan Wang
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen
  • 通讯作者:
    Janice Coen

Eric Rowell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Rowell', 18)}}的其他基金

Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
  • 批准号:
    2327208
  • 财政年份:
    2023
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2038741
  • 财政年份:
    2021
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Biomass burning smoke as a driver of multi-scale microbial teleconnections
合作研究:生物质燃烧烟雾作为多尺度微生物遥相关的驱动因素
  • 批准号:
    2039531
  • 财政年份:
    2021
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Quantized Symmetries in Operator Algebras and Quantum Information
算子代数和量子信息中的量化对称性
  • 批准号:
    2000331
  • 财政年份:
    2020
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
  • 批准号:
    1664359
  • 财政年份:
    2017
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Foundations of Topological Quantum Computation
合作研究:拓扑量子计算的数学基础
  • 批准号:
    1410144
  • 财政年份:
    2015
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Phases of Matter and their Application to Quantum Computing
合作研究:物质的拓扑相及其在量子计算中的应用
  • 批准号:
    1108725
  • 财政年份:
    2011
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Topological Symmetries of Non-Compact Riemann Surfaces
LEAPS-MPS:非紧黎曼曲面的拓扑对称性
  • 批准号:
    2212922
  • 财政年份:
    2022
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
  • 批准号:
    547533-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
  • 批准号:
    547533-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
  • 批准号:
    547533-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Driven topological phases with space and time symmetries
具有空间和时间对称性的驱动拓扑相
  • 批准号:
    431935798
  • 财政年份:
    2019
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Research Grants
Quantum symmetries: mathematical models for topological matter
量子对称性:拓扑物质的数学模型
  • 批准号:
    FT170100019
  • 财政年份:
    2018
  • 资助金额:
    $ 19.49万
  • 项目类别:
    ARC Future Fellowships
Unified understanding of topological semimetals and quantum spin liquids based on spatial symmetries and electronic filling
基于空间对称性和电子填充的拓扑半金属和量子自旋液体的统一认识
  • 批准号:
    17K17678
  • 财政年份:
    2017
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topological symmetries and intrinsic properties of graphs embedded in 3-space
嵌入 3 空间的图的拓扑对称性和内在属性
  • 批准号:
    0905087
  • 财政年份:
    2009
  • 资助金额:
    $ 19.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了