FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
基本信息
- 批准号:1664359
- 负责人:
- 金额:$ 30.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A second quantum revolution in and around the construction of a useful quantum computer has been advancing dramatically in the last few years. Topological phases of matter, the importance of which has been recognized by scientific awards that include the 2016 Nobel prize in physics, exhibit many-body quantum entanglement. This makes such materials prime candidates for use in a quantum computer. Topological quantum computation is maturing at the forefront of the second quantum revolution as a primary application of topological phases of matter. The theoretical foundation for the second quantum revolution remains under development, but it appears clear that algebras and their representations will play a role analogous to that played by group theory in the first quantum revolution. This focused research group aims to formulate the theoretical foundations of topological quantum computation, leading to an eventual theoretical foundation for the second quantum revolution. It is anticipated that the results of the research will guide and accelerate the construction of a topological quantum computer. A working topological quantum computer will fundamentally transform the landscape of information science and technology. The project includes participation by graduate students and postdoctoral associates in the interdisciplinary research.The goal of topological quantum computation is the construction of a useful quantum computer based on braiding anyons. The hardware of an anyonic quantum computer will be a topological phase of matter that harbors non-abelian anyons. A physical system is in a topological phase if at low energies some physical quantities are topologically invariant. Topological properties are non-local, yet can manifest themselves through local geometric properties. The success of topological quantum computation hinges on controlling topological phases and understanding their computational power. This research addresses the mathematical, physical, and computational aspects of topological quantum computation. The projects include classification of super-modular categories, vector-valued modular forms for modular categories, extension of modular categories to three dimensions, simulation of conformal field theories, topological quantum computation with gapped boundaries and symmetry defects, and universality of topological computing models. The research has potential impacts ranging from new understanding of vertex operator algebras to the development of useful quantum computers. One specific goal is a structure theory of modular categories analogous to that of finite groups. Such a theory would lead to a structure theory of two-dimensional topological phases of matter.
在过去的几年里,围绕着构建有用的量子计算机的第二次量子革命已经取得了巨大的进展。物质的拓扑相,其重要性已被包括2016年诺贝尔物理学奖在内的科学奖项所认可,表现出多体量子纠缠。这使得这种材料成为量子计算机的主要候选者。 拓扑量子计算作为物质拓扑相的主要应用,正处于第二次量子革命的前沿。第二次量子革命的理论基础仍在发展中,但显然代数及其表示将扮演类似于第一次量子革命中群论所扮演的角色。这个重点研究小组的目标是制定拓扑量子计算的理论基础,最终为第二次量子革命奠定理论基础。预计研究结果将指导和加速拓扑量子计算机的构建。拓扑量子计算机将从根本上改变信息科学和技术的面貌。该项目包括研究生和博士后参与的跨学科研究。拓扑量子计算的目标是构建一个有用的量子计算机的基础上编织任意子。任意子量子计算机的硬件将是含有非阿贝尔任意子的物质的拓扑相。一个物理系统是在拓扑相,如果在低能量的一些物理量是拓扑不变的。拓扑性质是非局部的,但可以通过局部几何性质表现出来。拓扑量子计算的成功取决于控制拓扑相和理解它们的计算能力。这项研究涉及拓扑量子计算的数学,物理和计算方面。这些项目包括超模范畴的分类、模范畴的向量值模形式、模范畴到三维的扩展、共形场论的模拟、带间隙边界和对称缺陷的拓扑量子计算以及拓扑计算模型的普适性。这项研究具有潜在的影响,从对顶点算子代数的新理解到有用的量子计算机的开发。一个具体的目标是一个结构理论的模块类别类似于有限群。这样的理论将导致物质的二维拓扑相的结构理论。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On invariants of modular categories beyond modular data
关于模块化数据之外的模块化类别的不变量
- DOI:10.1016/j.jpaa.2018.12.017
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Bonderson, Parsa;Delaney, Colleen;Galindo, César;Rowell, Eric C.;Tran, Alan;Wang, Zhenghan
- 通讯作者:Wang, Zhenghan
On Realizing Modular Data.
关于实现模块化数据。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Parsa Bonderson;E. Rowell;Zhenghan Wang
- 通讯作者:Zhenghan Wang
Generalisations of Hecke algebras from loop braid groups
环形辫群赫克代数的推广
- DOI:10.2140/pjm.2023.323.31
- 发表时间:2023
- 期刊:
- 影响因子:0.6
- 作者:Damiani, Celeste;Martin, Paul;Rowell, Eric C.
- 通讯作者:Rowell, Eric C.
Modular categories of dimension $p^3m$ with $m$ square-free
- DOI:10.1090/proc/13776
- 发表时间:2016-09
- 期刊:
- 影响因子:1
- 作者:P. Bruillard;J. Plavnik;E. Rowell
- 通讯作者:P. Bruillard;J. Plavnik;E. Rowell
On acyclic anyon models
在非循环任意子模型上
- DOI:10.1007/s11128-018-2012-9
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Galindo, César;Rowell, Eric;Wang, Zhenghan
- 通讯作者:Wang, Zhenghan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Rowell其他文献
Wildfire Fuels Mapping through Artificial Intelligence-based Methods: A Review
基于人工智能方法的野火燃料制图:综述
- DOI:
10.1016/j.earscirev.2025.105064 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:10.000
- 作者:
Riyaaz Uddien Shaik;Mohamad Alipour;Kasra Shamsaei;Eric Rowell;Bharathan Balaji;Adam Watts;Branko Kosovic;Hamed Ebrahimian;Ertugrul Taciroglu - 通讯作者:
Ertugrul Taciroglu
FUELVISION: A Multimodal Data Fusion and Multimodel Ensemble Algorithm for Wildfire Fuels Mapping
FUELVISION:用于野火燃料测绘的多模态数据融合和多模型集成算法
- DOI:
10.48550/arxiv.2403.15462 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
R. Shaik;Mohamad Alipour;Eric Rowell;Bharathan Balaji;Adam Watts;E. Taciroğlu - 通讯作者:
E. Taciroğlu
Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests
评估近距离摄影测量以实现松林 3D 林下燃料表征和生物量预测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Gina R. Cova;S. Prichard;Eric Rowell;Brian Drye;P. Eagle;Maureen C. Kennedy;Deborah G. Nemens - 通讯作者:
Deborah G. Nemens
On Classification of Modular Tensor Categories
- DOI:
10.1007/s00220-009-0908-z - 发表时间:
2009-08-25 - 期刊:
- 影响因子:2.600
- 作者:
Eric Rowell;Richard Stong;Zhenghan Wang - 通讯作者:
Zhenghan Wang
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen - 通讯作者:
Janice Coen
Eric Rowell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Rowell', 18)}}的其他基金
Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
- 批准号:
2327208 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Quantum Symmetries of Topological Phases of Matter
物质拓扑相的量子对称性
- 批准号:
2205962 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2038741 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Biomass burning smoke as a driver of multi-scale microbial teleconnections
合作研究:生物质燃烧烟雾作为多尺度微生物遥相关的驱动因素
- 批准号:
2039531 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Quantized Symmetries in Operator Algebras and Quantum Information
算子代数和量子信息中的量化对称性
- 批准号:
2000331 - 财政年份:2020
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Foundations of Topological Quantum Computation
合作研究:拓扑量子计算的数学基础
- 批准号:
1410144 - 财政年份:2015
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Topological Phases of Matter and their Application to Quantum Computing
合作研究:物质的拓扑相及其在量子计算中的应用
- 批准号:
1108725 - 财政年份:2011
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
相似海外基金
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
- 批准号:
2309157 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322891 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322892 - 财政年份:2023
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204382 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204400 - 财政年份:2022
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
CQIS: Quantum Chaos and Quantum Gravity from Entanglement
CQIS:纠缠中的量子混沌和量子引力
- 批准号:
2111998 - 财政年份:2021
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
CQIS: RUI: Quantum State Symmetry and Applications
CQIS:RUI:量子态对称性及其应用
- 批准号:
2011074 - 财政年份:2020
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
RUI: CQIS: OP: State-Preparation-and-Measurement Tomography
RUI:CQIS:OP:状态准备和测量断层扫描
- 批准号:
1855174 - 财政年份:2018
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant














{{item.name}}会员




