Novel Transportation-Based Geometries, Gradient Flows, and Applications to Data Science

基于新型交通的几何形状、梯度流及其在数据科学中的应用

基本信息

  • 批准号:
    2206069
  • 负责人:
  • 金额:
    $ 37.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project will develop mathematical tools to study data science and signal processing tasks. While differential equations and variational approaches provide useful models for data science tasks, the effectiveness of many of the present models diminishes in high dimensions due to computational challenges and a lack of statistical reliability. This project will provide approaches to machine learning tasks that take advantage of the geometry of the data and can be accurately approximated in high dimensions. The project will lead to new and more accurate ways to sample and represent data distributions. The project will provide opportunities for training a new generation of mathematicians who will gain knowledge of modern techniques of applied analysis and be aware of important questions arising in data science.Motivated by problems in data science, partial differential equations (PDE) on graphs, and tasks in signal analysis, the project will investigate several distinct settings. A major effort will be devoted to studying ensemble methods for samplings, such as the Stein Variational Gradient Descent and related models. The models will provide a deterministic particle-based method for sampling Gibbs distributions for general potentials. The project will investigate the geometry and gradient flows in Stein geometry and related models. More broadly, ensemble-based methods provide a promising avenue to address challenging sampling problems (multimodal, highly anisotropic energy landscapes). Their connection to PDE via mean-field limits also allows for analytical study and modeling. The investigator and collaborators will explore several models and develop both theoretical understanding and computational approaches. The project will also study paths in the spaces of probability measures based on the nonlocal continuity equation and the resulting nonlocal Wasserstein metrics. Regarding signal analysis, the project will study deformation-based geometries on the space of signals that allow for both transportation and intensity-based differences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发数学工具来研究数据科学和信号处理任务。虽然微分方程和变分方法为数据科学任务提供了有用的模型,但由于计算挑战和缺乏统计可靠性,许多现有模型的有效性在高维中降低。该项目将提供机器学习任务的方法,这些方法利用数据的几何形状,并且可以在高维中准确地近似。该项目将导致新的和更准确的方式来采样和表示数据分布。该项目将为培养新一代数学家提供机会,他们将获得应用分析的现代技术知识,并意识到数据科学中出现的重要问题。该项目将研究数据科学中的问题,图形偏微分方程(PDE)和信号分析任务,该项目将研究几个不同的设置。一个主要的努力将致力于研究采样的集合方法,如斯坦变分梯度下降和相关的模型。该模型将提供一个确定性的粒子为基础的方法,一般潜力的吉布斯分布采样。该项目将研究Stein几何和相关模型中的几何和梯度流。更广泛地说,基于集成的方法提供了一个有前途的途径来解决具有挑战性的采样问题(多模态,高度各向异性的能量景观)。它们通过平均场极限与偏微分方程的连接也允许分析研究和建模。研究人员和合作者将探索几种模型,并开发理论理解和计算方法。该项目还将研究基于非局部连续性方程和由此产生的非局部Wasserstein度量的概率测度空间中的路径。关于信号分析,该项目将研究信号空间上的基于变形的几何形状,考虑到传输和基于强度的差异。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dejan Slepcev其他文献

Dejan Slepcev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dejan Slepcev', 18)}}的其他基金

RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Continuing Grant
Variational Problems and Partial Differential Equations on Discrete Random Structures: Analysis and Applications to Data Science
离散随机结构的变分问题和偏微分方程:分析及其在数据科学中的应用
  • 批准号:
    1814991
  • 财政年份:
    2018
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Standard Grant
Variational Problems on Random Structures: Analysis and Applications to Data Science
随机结构的变分问题:数据科学的分析和应用
  • 批准号:
    1516677
  • 财政年份:
    2015
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Standard Grant
Nonlocal energies and their application to data analysis and collective behavior of many-particle systems
非局域能量及其在多粒子系统数据分析和集体行为中的应用
  • 批准号:
    1211760
  • 财政年份:
    2012
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Continuing Grant
Energy-driven systems: Geometry of energy landscapes and applications
能源驱动系统:能源景观和应用的几何形状
  • 批准号:
    0908415
  • 财政年份:
    2009
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Standard Grant
Dynamics of Unstable Thin Liquid Films and Coarsening
不稳定薄液膜和粗化的动力学
  • 批准号:
    0638481
  • 财政年份:
    2006
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Standard Grant

相似海外基金

Proposal for a regional hospital reorganisation policy using patients' records of transportation for emergency - based on operational records of medical helicopters
利用患者紧急运输记录的区域医院重组政策提案——基于医疗直升机的运行记录
  • 批准号:
    23H03133
  • 财政年份:
    2023
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Microeconomics on Cities, Transportation, and the Environment Based on New Economic Geography
基于新经济地理学的城市、交通与环境应用微观经济学
  • 批准号:
    23KJ1886
  • 财政年份:
    2023
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
AtomTRAIN: Atom-based Transportation Resilience with Atom Interferometer Navigation
AtomTRAIN:基于原子的运输弹性与原子干涉仪导航
  • 批准号:
    10084906
  • 财政年份:
    2023
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Small Business Research Initiative
Evaluation of Hierarchical Public Transportation Network using GTFS and AI-based suitability assessment for the region
使用 GTFS 和基于人工智能的区域适宜性评估评估分层公共交通网络
  • 批准号:
    22K04357
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Agent-based Microsimulation of Land Use, Technology Adoption, and Transportation within an Integrated Urban Modelling Framework
在集成城市建模框架内对土地使用、技术采用和交通进行基于代理的微观模拟
  • 批准号:
    RGPIN-2019-05537
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Discovery Grants Program - Individual
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
  • 批准号:
    2200633
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Standard Grant
Community-based alternative urban transportation decarbonization pathways and co-benefits for climate resilience, air quality, health, and equity
基于社区的替代城市交通脱碳途径以及对气候适应力、空气质量、健康和公平的共同效益
  • 批准号:
    577085-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Alliance Grants
Reinforcement-Learning Based Routing for Public/Private Partnership in Autonomous Transportation Systems
自主交通系统中基于强化学习的公共/私人合作伙伴关系的路由
  • 批准号:
    546706-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimal charging control of electrified public transportation based on deep reinforcement learning
基于深度强化学习的电动化公交最优充电控制
  • 批准号:
    580528-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Alliance Grants
Establishment of an applied methodology for geographical and economic impacts of transportation infrastructure projects based on spatial economic theory
基于空间经济理论建立交通基础设施项目地理和经济影响的应用方法
  • 批准号:
    22H01617
  • 财政年份:
    2022
  • 资助金额:
    $ 37.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了