Nonlocal energies and their application to data analysis and collective behavior of many-particle systems

非局域能量及其在多粒子系统数据分析和集体行为中的应用

基本信息

  • 批准号:
    1211760
  • 负责人:
  • 金额:
    $ 13.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The PI studies two lines of applications of systems with nonlocal effects, that is systems in which points are subject to far-away influences. One application is to investigation of large data sets. Advances in automated data-acquisition techniques (such as digital microscopy) has enabled one to gather large data sets holding a wealth of information. Such data sets are often of very high dimension (for example digital images). To be able to extract the information contained, it is desirable to simplify them with minimal loss of information. One approach is to approximate the data set by a low-dimensional manifold. This project is concerned with a variational approach using nonlocal energies for parameterizing the data with a curve. The goal is to contribute to understanding of which functionals provide for good data approximation and are amenable to efficient computational implementation. The PI studies the fundamental questions such as existence and regularity of minimizers, as well as numerical implementation and applicability to data sets. The other line of investigation concerns behavior of particle systems with long range interaction. Such systems arise as models of collective behavior of a variety of living organisms (locust, fish, birds, bacteria, and others). Goal of this research is to help explain why and how large, well-organized groups (such as swarms, schools, flocks, etc.) of organisms form. Furthermore to describe mathematically the evolution of these groups, and explain why are they stable and explore how they interact with the environment in particular in the presence of environmental boundaries. The development of the new mathematical tools, such as gradient flows in spaces of probability measures, provides the techniques that make significant progress on these issues likely.Being able to extract information from large data sets is a scientific challenge with important practical consequences. The research of the PI can lead to improved algorithms for data parameterization and approximation. This in turn can improve data clustering, classification, visualization, and other tasks. An example of an application is improving and automating the diagnostics of some diseases, based on images of tissue samples. Understanding how large groups of a variety of organisms form and behave is an important biological question. It is also one where mathematics, based on simple rules of interaction between individuals, can provide important insights. The knowledge obtained can be used to predict and offer guidance on how such groups (for example locust swarms) could be influenced.
PI 研究具有非局部效应的系统的两种应用,即点受到远距离影响的系统。一种应用是调查大型数据集。自动数据采集技术(例如数字显微镜)的进步使人们能够收集包含大量信息的大型数据集。 此类数据集通常具有非常高的维度(例如数字图像)。 为了能够提取所包含的信息,需要以最小的信息损失来简化它们。 一种方法是通过低维流形来近似数据集。该项目涉及使用非局部能量通过曲线参数化数据的变分方法。目标是帮助理解哪些函数可以提供良好的数据近似并且适合高效的计算实现。 PI 研究基本问题,例如最小化器的存在性和规律性,以及数值实现和数据集的适用性。 另一条研究路线涉及具有长程相互作用的粒子系统的行为。 这些系统是作为各种生物体(蝗虫、鱼、鸟类、细菌等)集体行为的模型而出现的。这项研究的目标是帮助解释大型、组织良好的生物群体(如群体、群体、群体等)形成的原因和方式。此外,以数学方式描述这些群体的进化,并解释它们为什么稳定,并探索它们如何与环境相互作用,特别是在存在环境边界的情况下。新数学工具的发展,例如概率测度空间中的梯度流,提供了可能在这些问题上取得重大进展的技术。能够从大型数据集中提取信息是一项科学挑战,具有重要的实际后果。 PI 的研究可以改进数据参数化和近似的算法。这反过来又可以改进数据聚类、分类、可视化和其他任务。 应用的一个例子是根据组织样本的图像改进和自动化某些疾病的诊断。了解各种生物体的大群体如何形成和行为是一个重要的生物学问题。基于个体之间相互作用的简单规则的数学也可以提供重要的见解。获得的知识可用于预测此类群体(例如蝗虫群)如何受到影响并提供指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dejan Slepcev其他文献

Dejan Slepcev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dejan Slepcev', 18)}}的其他基金

RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Continuing Grant
Novel Transportation-Based Geometries, Gradient Flows, and Applications to Data Science
基于新型交通的几何形状、梯度流及其在数据科学中的应用
  • 批准号:
    2206069
  • 财政年份:
    2022
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Variational Problems and Partial Differential Equations on Discrete Random Structures: Analysis and Applications to Data Science
离散随机结构的变分问题和偏微分方程:分析及其在数据科学中的应用
  • 批准号:
    1814991
  • 财政年份:
    2018
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Variational Problems on Random Structures: Analysis and Applications to Data Science
随机结构的变分问题:数据科学的分析和应用
  • 批准号:
    1516677
  • 财政年份:
    2015
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Energy-driven systems: Geometry of energy landscapes and applications
能源驱动系统:能源景观和应用的几何形状
  • 批准号:
    0908415
  • 财政年份:
    2009
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Dynamics of Unstable Thin Liquid Films and Coarsening
不稳定薄液膜和粗化的动力学
  • 批准号:
    0638481
  • 财政年份:
    2006
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
  • 批准号:
    2414106
  • 财政年份:
    2024
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Continuing Grant
Bond Dissociation Energies and Electronic Structure of Small Transition Metal and Lanthanide Molecules
过渡金属和镧系小分子的键解离能和电子结构
  • 批准号:
    2305293
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
MultidiSciplinary and MultIscale approach for coupLed processes induced by geo-Energies
地能引起的耦合过程的多学科和多尺度方法
  • 批准号:
    EP/X032752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Construction of a predictive model for antigen-antibody interaction energies using the FMO database
使用FMO数据库构建抗原抗体相互作用能量的预测模型
  • 批准号:
    23K18192
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Next Generation Silicon-Carbide MOSFETs for Electrification and Renewable Energies
用于电气化和可再生能源的下一代碳化硅 MOSFET
  • 批准号:
    10072835
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Grant for R&D
UNderwater IntervenTion for offshore renewable Energies (UNITE)
近海可再生能源水下干预 (UNITE)
  • 批准号:
    EP/X024806/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Experimental Particle Physics Research at High Energies
高能实验粒子物理研究
  • 批准号:
    2309945
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Continuing Grant
Elucidating Ring Opening Metathesis Copolymerization Thermodynamics of Monomers with Dissimilar Ring Strain Energies
阐明不同环应变能单体的开环复分解共聚热力学
  • 批准号:
    2305099
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
  • 批准号:
    10759829
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
Investigating Hadron Structure at Low and Medium Energies
研究低能和中能的强子结构
  • 批准号:
    SAPIN-2022-00025
  • 财政年份:
    2022
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了