Dynamics of Unstable Thin Liquid Films and Coarsening
不稳定薄液膜和粗化的动力学
基本信息
- 批准号:0638481
- 负责人:
- 金额:$ 9.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to investigating dynamical behavior of thin liquid films and, more generally, systems driven by energy reduction. Thin liquid films can be described by a single equation for the fluid height --- the thin-film equation. Intermolecular forces can destabilize fluid films and lead to complex dynamical behavior. In some systems, droplet configurations that form coarsen over time; the average size of droplets grows, while their number is decreasing. In others instabilities lead to singularity formation. We will investigate these processes using a combination of novel analytical techniques, asymptotic analysis and computational methods. We will also investigate formation and dynamics of interfaces in models of biological aggregation. Large-scale and long-time behavior will also be investigated. Unifying theme of the above systems is that they are driven by energy dissipation. We intend to both use and further develop modern analytical techniques that utilize the underlying geometric structure of these systems.The project will generate experimentally verifiable predictions about behavior of thin liquid films. With continuing miniaturization trends, applications in which thin liquid films play a role are becoming more widespread (industrial processes, microfluidic devices). Thus understanding the multitude of phenomena that thin films exhibit becomes ever more important. Systems driven by reduction of the energy are ubiquitous in nature. Many such systems share the common structure of the equation that describes them. We will use recent advances on geometry of such equations to gain direct insights into the syste
该项目致力于研究薄液膜的动力学行为,更一般地说,由能量减少驱动的系统。薄液膜可以用一个流体高度方程来描述-薄膜方程。 分子间力可以使流体膜不稳定并导致复杂的动力学行为。在一些系统中,形成的液滴配置随着时间的推移而变粗;液滴的平均大小增加,而它们的数量减少。在其他情况下,不稳定性导致奇点的形成。我们将调查这些过程中使用新的分析技术,渐近分析和计算方法相结合。 我们还将研究生物聚集模型中界面的形成和动力学。大规模和长时间的行为也将被调查。上述系统的统一主题是它们由能量耗散驱动。我们打算使用和进一步发展现代分析技术,利用这些系统的基本几何结构。该项目将产生实验验证的预测薄液膜的行为。随着持续的小型化趋势,其中薄液体膜发挥作用的应用变得越来越广泛(工业过程、微流体装置)。因此,了解薄膜所表现出的众多现象变得越来越重要。由能量减少驱动的系统在自然界中无处不在。许多这样的系统共享描述它们的方程的共同结构。我们将利用这些方程几何学的最新进展来直接了解这个系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dejan Slepcev其他文献
Dejan Slepcev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dejan Slepcev', 18)}}的其他基金
Novel Transportation-Based Geometries, Gradient Flows, and Applications to Data Science
基于新型交通的几何形状、梯度流及其在数据科学中的应用
- 批准号:
2206069 - 财政年份:2022
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Variational Problems and Partial Differential Equations on Discrete Random Structures: Analysis and Applications to Data Science
离散随机结构的变分问题和偏微分方程:分析及其在数据科学中的应用
- 批准号:
1814991 - 财政年份:2018
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Variational Problems on Random Structures: Analysis and Applications to Data Science
随机结构的变分问题:数据科学的分析和应用
- 批准号:
1516677 - 财政年份:2015
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Nonlocal energies and their application to data analysis and collective behavior of many-particle systems
非局域能量及其在多粒子系统数据分析和集体行为中的应用
- 批准号:
1211760 - 财政年份:2012
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Energy-driven systems: Geometry of energy landscapes and applications
能源驱动系统:能源景观和应用的几何形状
- 批准号:
0908415 - 财政年份:2009
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
相似海外基金
Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
- 批准号:
24K17829 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Magnetic properties of unstable nuclei: calculations of magnetic moments and distribution of nuclear magnetisation
不稳定原子核的磁特性:磁矩和核磁化强度分布的计算
- 批准号:
2782677 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Studentship
Using oncolytic viral therapy to target the tumour microenvironment in chromosomally unstable cancers
使用溶瘤病毒疗法靶向染色体不稳定癌症的肿瘤微环境
- 批准号:
2885348 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Studentship
Unstable nucleus accumbens social representations in models of social behavioral dysfunction.
不稳定的伏核在社会行为功能障碍模型中具有社会表征。
- 批准号:
10735723 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Influences of Coherent Structures on Validity of the Constant Flux Layer Assumptions in the Unstable Atmospheric Surface Layer
不稳定大气表层相干结构对恒定通量层假设有效性的影响
- 批准号:
2325687 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Implementation of an innovative generic RI stationary target to study unstable nuclear photoabsorption reactions
实施创新的通用 RI 固定靶来研究不稳定的核光吸收反应
- 批准号:
23H00113 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New horiazon of the unstable nuclei research opened by isobar separator development
等压分离器的开发开辟了不稳定核研究的新视野
- 批准号:
23H01204 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of RFQ-type isobar filters leading inovative research on unstable nuclear reactions
RFQ 型等压线过滤器的开发引领不稳定核反应的创新研究
- 批准号:
23K17307 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Precise measurement of charge density distribution of Sn unstable isotopes by advanced innovative SCRIT electron scattering
通过先进的创新 SCIT 电子散射精确测量 Sn 不稳定同位素的电荷密度分布
- 批准号:
23H05436 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Generation of unstable cations by cleavage of small ring compounds and reaction control using cation-pi interactions.
通过小环化合物的裂解产生不稳定的阳离子并使用阳离子-π相互作用控制反应。
- 批准号:
23K06036 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




