Variational Problems and Partial Differential Equations on Discrete Random Structures: Analysis and Applications to Data Science

离散随机结构的变分问题和偏微分方程:分析及其在数据科学中的应用

基本信息

  • 批准号:
    1814991
  • 负责人:
  • 金额:
    $ 24.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The investigator studies variational and partial differential equation (PDE) approaches to problems of data science. Modern technology enables us to obtain large amounts of data about virtually any aspect of the world we live in. The goal of data science is to extract and interpret the information the data contain. Achieving this leads to machine learning tasks such as regression, clustering, classification, dimensionality reduction, semi-supervised learning, and learning data representation (e.g. deep learning). These tasks are regularly cast as optimization problems where one minimizes an objective functional that models the desired properties of the object sought. The objective functionals and the resulting minimization are often posed on the available data sample, which leads to discrete variational problems on graphs and related structures representing the data. The goal of this project is to develop a mathematical framework to study variational and PDE-based problems on random data samples. The investigator uses insights from the continuum-based variational problems and PDEs to improve existing approaches in the discrete setting and introduce new models and algorithms for pertinent problems of data science. Graduate students are engaged in the research of the project.The investigator adapts tools of analysis to the discrete random setting in order to show the fundamental properties of the variational problems and PDEs on such structures. He works on establishing and using the connection between problems on random discrete structures and the continuum problems that arise in the large-sample limit. In particular, he investigates the behavior of Laplacian-based and p-Laplacian-based regularizations in semi-supervised learning; studies stable ways to detect the boundaries of the data sets and impose the desired boundary conditions; and develops accurate graph-based discretizations for the continuum problems that the data sets approximate in the limit. The second part of the project is devoted to gradient flows on random discrete structures. Here the investigator studies stability and asymptotic properties of such problems, as well as the properties of the nonlocal continuum problems that they represent. Graduate students are engaged in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究人员研究变分和偏微分方程(PDE)方法来解决数据科学问题。 现代技术使我们能够获得关于我们生活的世界的几乎任何方面的大量数据。 数据科学的目标是提取和解释数据中包含的信息。 实现这一点会导致机器学习任务,如回归,聚类,分类,降维,半监督学习和学习数据表示(例如深度学习)。 这些任务通常被视为优化问题,其中最小化目标泛函,该目标泛函对所寻求的对象的期望属性进行建模。 目标泛函和由此产生的最小化通常是在可用的数据样本上提出的,这会导致表示数据的图和相关结构上的离散变分问题。 这个项目的目标是开发一个数学框架来研究随机数据样本的变分和偏微分方程为基础的问题。 研究人员使用基于连续变分问题和偏微分方程的见解来改进离散环境中的现有方法,并为数据科学的相关问题引入新的模型和算法。研究生参与了该项目的研究。研究者将分析工具应用于离散随机设置,以显示此类结构上的变分问题和偏微分方程的基本性质。 他致力于建立和使用随机离散结构问题与大样本极限中出现的连续问题之间的联系。 特别是,他研究了半监督学习中基于拉普拉斯和基于p-Laplacian的正则化的行为;研究了检测数据集边界并施加所需边界条件的稳定方法;并为数据集近似于极限的连续问题开发了精确的基于图的离散化。 该项目的第二部分致力于随机离散结构上的梯度流。 在这里,研究人员研究这些问题的稳定性和渐近性质,以及它们所代表的非局部连续问题的性质。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accurate Quantization of Measures via Interacting Particle-based Optimization
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lantian Xu;Anna Korba;D. Slepčev
  • 通讯作者:
    Lantian Xu;Anna Korba;D. Slepčev
Poisson Learning: Graph Based Semi-Supervised Learning At Very Low Label Rates
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Calder;Brendan Cook;Matthew Thorpe;D. Slepčev
  • 通讯作者:
    J. Calder;Brendan Cook;Matthew Thorpe;D. Slepčev
Properly-Weighted Graph Laplacian for Semi-supervised Learning
  • DOI:
    10.1007/s00245-019-09637-3
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. Calder;D. Slepčev
  • 通讯作者:
    J. Calder;D. Slepčev
Nonlocal-Interaction Equation on Graphs: Gradient Flow Structure and Continuum Limit
图上的非局部相互作用方程:梯度流结构和连续极限
  • DOI:
    10.1007/s00205-021-01631-w
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Esposito, Antonio;Patacchini, Francesco S.;Schlichting, André;Slepčev, Dejan
  • 通讯作者:
    Slepčev, Dejan
Large data and zero noise limits of graph-based semi-supervised learning algorithms
  • DOI:
    10.1016/j.acha.2019.03.005
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dunlop, Matthew M.;Slepcev, Dejan;Thorpe, Matthew
  • 通讯作者:
    Thorpe, Matthew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dejan Slepcev其他文献

Dejan Slepcev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dejan Slepcev', 18)}}的其他基金

RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Novel Transportation-Based Geometries, Gradient Flows, and Applications to Data Science
基于新型交通的几何形状、梯度流及其在数据科学中的应用
  • 批准号:
    2206069
  • 财政年份:
    2022
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Variational Problems on Random Structures: Analysis and Applications to Data Science
随机结构的变分问题:数据科学的分析和应用
  • 批准号:
    1516677
  • 财政年份:
    2015
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Nonlocal energies and their application to data analysis and collective behavior of many-particle systems
非局域能量及其在多粒子系统数据分析和集体行为中的应用
  • 批准号:
    1211760
  • 财政年份:
    2012
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Continuing Grant
Energy-driven systems: Geometry of energy landscapes and applications
能源驱动系统:能源景观和应用的几何形状
  • 批准号:
    0908415
  • 财政年份:
    2009
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Dynamics of Unstable Thin Liquid Films and Coarsening
不稳定薄液膜和粗化的动力学
  • 批准号:
    0638481
  • 财政年份:
    2006
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    1811034
  • 财政年份:
    2018
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
  • 批准号:
    16K05240
  • 财政年份:
    2016
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
  • 批准号:
    25400180
  • 财政年份:
    2013
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
  • 批准号:
    1103165
  • 财政年份:
    2011
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Standard Grant
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
  • 批准号:
    22540203
  • 财政年份:
    2010
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the regularity of solutions for nonlinear partial differential equations related to variational problems
与变分问题有关的非线性偏微分方程解的规律性研究
  • 批准号:
    22540207
  • 财政年份:
    2010
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
  • 批准号:
    18540191
  • 财政年份:
    2006
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric variational problems and nonlinear partial differential systems
几何变分问题和非线性偏微分系统
  • 批准号:
    DP0450140
  • 财政年份:
    2004
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Discovery Projects
Nonlinear partial differntial equations related to geometric variational problems
与几何变分问题相关的非线性偏微分方程
  • 批准号:
    16540188
  • 财政年份:
    2004
  • 资助金额:
    $ 24.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了