GOALI: Network Models for Membrane Filtration
GOALI:膜过滤网络模型
基本信息
- 批准号:2206127
- 负责人:
- 金额:$ 47.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Membrane filters are used in in an extraordinarily wide range of everyday applications ranging from industrial waste treatment to water purification to air conditioning to food production and, of particular relevance today, medical masks and vaccine manufacture. Since the goal of effective filtration is the removal by the filter of particles or impurities carried by the feed solution, fouling of the membrane is unavoidable, leading ultimately to filter failure. Improved understanding of the fouling mechanisms, critical in improving filter designs, is therefore the target of significant research efforts. In addition to considerations of how particles interact with and adhere to the membrane material, pore structure, size and shape are critical factors in determining filter functionality and efficiency. There is considerable industrial interest in designing and manufacturing efficient filters that allow for fine control of particle removal while maintaining a reasonable lifetime. Such filters typically have pore size that decreases in the membrane depth; and may incorporate varying degrees of connectivity between pores. Our work will use theoretical approaches (combined with experimental calibration) to study general networks of pores within filters and identify optimal pore network structures that maximize filter lifetime while meeting a prescribed impurity removal threshold. This project will also provide training and research and industrial experiences for undergraduate and graduate students.This project addresses issues of flow and fouling in porous membrane filters, where the pore structure may be modeled as a network of connected (sufficiently slender) tubes. Working with industrial collaborators at W.L. Gore & Associates and with a team of students, the PIs will derive new predictive mathematical models to describe situations of practical importance. Our models will be formulated on arbitrary pore networks (where both the length and radius of pores can vary) and will describe fouling both by adsorption of small particulate contaminants at the pore walls, and by sieving of larger particles (with an arbitrary size distribution). We will study networks generated computationally (using a variant of the Random Geometric Graph construction) as well as real pore networks in non-proprietary manufactured membranes. We will also use methods from persistent homology (PH) to study connectivity features of such pore networks and how these evolve in time, to elucidate scaling relationships between geometric/topological features and filtration performance metrics. The work is of significant interest to our industrial collaborators, who will provide us with data and advise on industrial relevance via regular team meetings. This interaction will ensure that the project remains focused and will guarantee that we identify and address questions of real importance to applications. The experimental data provided will also allow us to identify appropriate ranges for unknown parameters in our models, and to test uncertain modeling assumptions. Additionally, we will formulate new modules for our Capstone Course in Applied Mathematics that will involve undergraduate students in the research by means of Monte-Carlo type simulations and persistent homology methods using available software libraries. The research will combine novel mathematical modeling with analytical approaches including graph theory, optimization, homogenization techniques, multiple scales analysis, asymptotic methods, stochastic analysis and probability theory, and efficient numerical techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
膜过滤器的应用范围非常广泛,从工业废物处理到水净化,从空调到食品生产,以及今天特别相关的医用口罩和疫苗制造。由于有效过滤的目的是通过过滤器去除进料溶液携带的颗粒或杂质,因此膜的污染是不可避免的,最终导致过滤器失效。因此,提高对污垢机制的理解,对改进过滤器设计至关重要,是重要研究工作的目标。除了考虑颗粒如何与膜材料相互作用和粘附外,孔结构、大小和形状是决定过滤器功能和效率的关键因素。有相当大的工业兴趣设计和制造高效的过滤器,允许颗粒去除的精细控制,同时保持合理的使用寿命。这种过滤器的孔径通常随着膜的深度而减小;并且可能包含不同程度的孔隙之间的连通性。我们的工作将使用理论方法(结合实验校准)来研究过滤器内的一般孔隙网络,并确定最佳孔隙网络结构,使过滤器寿命最大化,同时满足规定的杂质去除阈值。该项目还将为本科生和研究生提供培训、研究和工业经验。该项目解决了多孔膜过滤器中的流动和污染问题,其中孔隙结构可以建模为连接(足够细长)的管道网络。与W.L. Gore & & Associates的工业合作者以及一组学生合作,pi将推导出新的预测数学模型来描述具有实际重要性的情况。我们的模型将在任意孔隙网络(其中孔隙的长度和半径都可以变化)上制定,并将通过在孔隙壁上吸附小颗粒污染物和通过筛分大颗粒(具有任意尺寸分布)来描述污染。我们将研究计算生成的网络(使用随机几何图构造的一种变体)以及非专有制造膜中的真实孔隙网络。我们还将使用持续同源性(PH)的方法来研究这种孔隙网络的连通性特征以及这些特征如何随时间演变,以阐明几何/拓扑特征与过滤性能指标之间的比例关系。我们的工业合作者对这项工作非常感兴趣,他们将通过定期的团队会议向我们提供有关工业相关性的数据和建议。这种互动将确保项目保持重点,并将确保我们识别和解决对应用程序真正重要的问题。所提供的实验数据还将使我们能够确定模型中未知参数的适当范围,并测试不确定的建模假设。此外,我们将为我们的应用数学顶点课程制定新的模块,这些模块将通过蒙特卡罗类型模拟和使用可用软件库的持久同源方法让本科生参与研究。该研究将结合新颖的数学建模和分析方法,包括图论、优化、均匀化技术、多尺度分析、渐近方法、随机分析和概率论,以及有效的数值技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow through pore-size graded membrane pore network
流经孔径分级的膜孔网络
- DOI:10.1103/physrevfluids.8.044502
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Gu, Binan;Kondic, Lou;Cummings, Linda J.
- 通讯作者:Cummings, Linda J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Cummings其他文献
Two-dimensional Stokes and Hele-Shaw flows with free surfaces
具有自由表面的二维斯托克斯流和 Hele-Shaw 流
- DOI:
10.1017/s0956792599003964 - 发表时间:
1999 - 期刊:
- 影响因子:1.9
- 作者:
Linda Cummings;S. Howison;J. King - 通讯作者:
J. King
Ureteric stents: Investigating flow and encrustation
输尿管支架:研究流量和结壳
- DOI:
10.1243/09544119jeim317 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
S. Waters;K. Heaton;Jennifer H. Siggers;R. Bayston;M. Bishop;Linda Cummings;D. Grant;J. M. Oliver;J. Wattis - 通讯作者:
J. Wattis
Steady solutions for bubbles in dipole-driven Stokes flows
偶极子驱动斯托克斯流中气泡的稳态解
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Linda Cummings - 通讯作者:
Linda Cummings
Bistable nematic liquid crystal device with flexoelectric switching
具有挠曲电开关的双稳态向列液晶器件
- DOI:
10.1017/s0956792506006620 - 发表时间:
2006 - 期刊:
- 影响因子:1.9
- 作者:
Linda Cummings;G. Richardson - 通讯作者:
G. Richardson
Changes in the influence of socio-economic status on obesity among aging Canadian baby boomers.
社会经济地位对加拿大老年婴儿潮一代肥胖影响的变化。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Linda Cummings - 通讯作者:
Linda Cummings
Linda Cummings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Cummings', 18)}}的其他基金
Collaborative Research: A Two-Week Mentored Program to Prepare Graduate Students for Industrial Careers
合作研究:为期两周的指导项目,帮助研究生为工业职业做好准备
- 批准号:
1916232 - 财政年份:2019
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
STTR Phase I: Accelerating the dissemination of healthcare interventions that improve care for high-need/high-cost patients
STTR 第一阶段:加速医疗保健干预措施的传播,改善对高需求/高成本患者的护理
- 批准号:
1746142 - 财政年份:2018
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
Liquid Crystal Films Across Scales: Dewetting and Dielectrowetting
跨尺度的液晶薄膜:反润湿和介电润湿
- 批准号:
1815613 - 财政年份:2018
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
GOALI: Predicting performance and fouling of membrane filters
目标:预测膜过滤器的性能和污染
- 批准号:
1615719 - 财政年份:2016
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
Collaborative Research: Expanding Links with Industry through Collaborative Research and Education in Applied Mathematics
合作研究:通过应用数学合作研究和教育扩大与工业界的联系
- 批准号:
1261596 - 财政年份:2013
- 资助金额:
$ 47.76万 - 项目类别:
Continuing Grant
Modeling & analysis of nematic films: Flow-substrate interactions
造型
- 批准号:
1211713 - 财政年份:2012
- 资助金额:
$ 47.76万 - 项目类别:
Continuing Grant
Collaborative Research: The MPI Workshop and GSMM Camp
合作研究:MPI 研讨会和 GSMM 营
- 批准号:
1153954 - 财政年份:2012
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
Modeling and analysis of nematic liquid crystals in thin geometries: Bistable configurations and free surface instabilities
薄几何形状向列液晶的建模和分析:双稳态配置和自由表面不稳定性
- 批准号:
0908158 - 财政年份:2009
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
- 批准号:
DP240102329 - 财政年份:2024
- 资助金额:
$ 47.76万 - 项目类别:
Discovery Projects
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 47.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
- 批准号:
10665213 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10740473 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
- 批准号:
2236789 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Continuing Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
Ideas Lab: Collaborative Research: Integrating cross-kingdom lncRNA genetic and functional interactions to build predictive network models
创意实验室:协作研究:整合跨界 lncRNA 遗传和功能相互作用,构建预测网络模型
- 批准号:
2243562 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Standard Grant
Network models of differentiation landscapes for angiogenesis and hematopoiesis
血管生成和造血分化景观的网络模型
- 批准号:
10622797 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Scale-freeness and Growth Stability of Realistic Network Models
现实网络模型的无标度和增长稳定性
- 批准号:
2875860 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Studentship