Graphical Optimal Transport: Theory, Algorithms, and Applications
图形优化传输:理论、算法和应用
基本信息
- 批准号:2206576
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop mathematical theories and efficient algorithms to study a class of multi-marginal optimal transport (OT) methods.  OT is a popular mathematical framework that has found many applications in several areas such as economics, operations research, biology, signal processing, systems and control, and data science. Still, the computational complexity of using multiple marginals hinders its use in practice, and most applications of OT are limited to two marginals. The resulting framework will greatly expand the applications of OT methods with multiple marginals. The project will also include an important application, estimating the group behavior of a large population with aggregate measurements. The measurements are aggregated in the sense that the individuals in the population/group are indistinguishable from each other. Such measurement may occur due to privacy issues where the identities of the individuals are unrevealed. This study will be potentially applicable to studying the disease spreading in a large population. Finally, the interdisciplinary nature of the research bridging multiple subjects will impact and cross-fertilize science and education in these areas. This research aims to establish a unified framework for multi-marginal OT problems with graphical costs. Unlike bi-marginal OT, which has been widely used in applications, the use of multi-marginal OT has been hindered by its notorious computational complexity that typically grows exponentially as the number of marginals increases. Still, the complexity of multi-marginal OT can be alleviated by exploiting the structures of its cost function. The project will focus on an important type of cost structure that encodes the marginals as nodes in a graph. Many multi-marginal OT problems such as the Wasserstein barycenter and the incompressible Euler flow problems are associated with such graphical structures. This project will build on two seemly irrelevant subjects: optimal transport and probabilistic graphical models. The investigator will establish the overall framework of graphical OT by merging the two subjects, and systematically investigate the theoretical properties of graphical OT, particularly in the setting with continuous state variables. Another important task is to develop efficient algorithms by leveraging available algorithms in both OT and probabilistic graphical models. Finally, the investigator will apply the framework to a representative application known as inference with aggregate measurements. In this type of inference problem involving a large population of individuals, the observations are aggregated in the form of distributions, and the problem can be formulated as an entropy regularized multi-marginal OT problem whose cost tensor is associated with a hidden Markov model. The project will provide theoretical and algorithmic tools for addressing OT problems with structured costs, and greatly expand the application domains of multi-marginal OT.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画旨在发展数学理论与有效演算法以研究一类多边际最佳运输方法。  OT是一种流行的数学框架,在经济学、运筹学、生物学、信号处理、系统与控制以及数据科学等多个领域都有许多应用。尽管如此,使用多个边缘的计算复杂性阻碍了它在实践中的使用,并且OT的大多数应用仅限于两个边缘。由此产生的框架将大大扩展OT方法与多边缘的应用。该项目还将包括一个重要的应用程序,估计群体行为的一个大的人口与总的测量。测量结果是在群体/组中的个体彼此无法区分的意义上聚合的。这种测量可能由于个人身份未被披露的隐私问题而发生。这项研究将可能适用于研究疾病在大规模人群中的传播。最后,跨学科研究的跨学科性质将影响和交叉施肥在这些领域的科学和教育。本研究的目的是建立一个统一的框架,多边际OT问题的图形成本。与已在应用中广泛使用的双边缘OT不同,多边缘OT的使用受到其臭名昭著的计算复杂性的阻碍,该计算复杂性通常随着边缘数的增加而呈指数级增长。尽管如此,多边际OT的复杂性可以通过利用其成本函数的结构来减轻。该项目将重点关注一种重要的成本结构类型,它将边际编码为图中的节点。许多多边缘OT问题,如Wasserstein重心和不可压缩欧拉流问题与这种图形结构。这个项目将建立在两个完全不相关的主题上:最佳运输和概率图模型。研究者将通过合并这两个主题来建立图形OT的整体框架,并系统地研究图形OT的理论特性,特别是在连续状态变量的设置中。另一个重要的任务是通过利用OT和概率图模型中的可用算法来开发有效的算法。最后,研究人员将应用框架的一个代表性的应用称为推理与综合测量。在这种涉及大量个体的推理问题中,观测以分布的形式聚集,并且该问题可以被公式化为熵正则化的多边缘OT问题,其成本张量与隐马尔可夫模型相关联。该项目将为解决结构化成本的OT问题提供理论和算法工具,并极大地扩展了多边缘OT的应用领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density Control of Interacting Agent Systems
- DOI:10.1109/tac.2023.3271226
- 发表时间:2021-08
- 期刊:
- 影响因子:6.8
- 作者:Yongxin Chen
- 通讯作者:Yongxin Chen
On a Class of Gibbs Sampling over Networks
- DOI:
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Bo Yuan;JiaoJiao Fan;Jiaming Liang;Andre Wibisono;Yongxin Chen
- 通讯作者:Bo Yuan;JiaoJiao Fan;Jiaming Liang;Andre Wibisono;Yongxin Chen
Improved dimension dependence of a proximal algorithm for sampling
- DOI:
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:JiaoJiao Fan;Bo Yuan;Yongxin Chen
- 通讯作者:JiaoJiao Fan;Bo Yuan;Yongxin Chen
Scalable Computation of Dynamic Flow Problems via Multimarginal Graph-Structured Optimal Transport
通过多边际图结构最优传输进行动态流问题的可扩展计算
- DOI:10.1287/moor.2021.148
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Haasler, Isabel;Ringh, Axel;Chen, Yongxin;Karlsson, Johan
- 通讯作者:Karlsson, Johan
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Yongxin Chen其他文献
I2-Catalyzed diamination of acetyl-compounds for the synthesis of multi-substituted imidazoles
I2-催化乙酰基化合物二胺化合成多取代咪唑
- DOI:10.1039/c5nj00910c 
- 发表时间:2015-06 
- 期刊:
- 影响因子:3.3
- 作者:Jinpeng Qu;Ping Wu;Dong Tang;Xu Meng;Yongxin Chen;Shuaibo Guo;Baohua Chen 
- 通讯作者:Baohua Chen 
Data-Driven Optimal Control via Linear Transfer Operators: A Convex Approach
通过线性传递算子的数据驱动最优控制:凸方法
- DOI:10.1016/j.automatica.2022.110841 
- 发表时间:2022 
- 期刊:
- 影响因子:0
- 作者:J. Moyalan;Hyungjin Choi;Yongxin Chen;U. Vaidya 
- 通讯作者:U. Vaidya 
Effects of neferine on TGF-β1 induced proliferation and gremlin expression in hepatic stellate cells
莲心碱对TGF-β1诱导的肝星状细胞增殖和gremlin表达的影响
- DOI:10.3329/bjp.v7i3.11298 
- 发表时间:2012 
- 期刊:
- 影响因子:1.6
- 作者:Xiaofei Li;L. Lou;Shuang Wu;Yongxin Chen;L. Jin 
- 通讯作者:L. Jin 
Mean Field Type Control With Species Dependent Dynamics via Structured Tensor Optimization
通过结构化张量优化实现物种相关动力学的平均场类型控制
- DOI:
- 发表时间:2023 
- 期刊:
- 影响因子:3
- 作者:Axel Ringh;Isabel Haasler;Yongxin Chen;J. Karlsson 
- 通讯作者:J. Karlsson 
Navigation with Probabilistic Safety Constraints: A Convex Formulation
具有概率安全约束的导航:凸公式
- DOI:10.23919/acc53348.2022.9867300 
- 发表时间:2022 
- 期刊:
- 影响因子:0
- 作者:J. Moyalan;Yongxin Chen;U. Vaidya 
- 通讯作者:U. Vaidya 
Yongxin Chen的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Yongxin Chen', 18)}}的其他基金
CAREER: Towards a Principled Framework for the Modeling and Control of Non-equilibrium Thermodynamic Systems
职业:建立非平衡热力学系统建模和控制的原则框架
- 批准号:1942523 
- 财政年份:2020
- 资助金额:$ 24万 
- 项目类别:Continuing Grant 
Collaborative Research: CIF: Small: A Unified Framework of Distributional Optimization via Variational Transport
合作研究:CIF:小型:通过变分传输的分布式优化的统一框架
- 批准号:2008513 
- 财政年份:2020
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
COLLABORATIVE RESEARCH: DYNAMICS OF DENSITIES: MODELING, CONTROL AND ESTIMATION
合作研究:密度动态:建模、控制和估计
- 批准号:1807677 
- 财政年份:2018
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
COLLABORATIVE RESEARCH: DYNAMICS OF DENSITIES: MODELING, CONTROL AND ESTIMATION
合作研究:密度动态:建模、控制和估计
- 批准号:1901599 
- 财政年份:2018
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
相似海外基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:2401019 
- 财政年份:2024
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:2339898 
- 财政年份:2024
- 资助金额:$ 24万 
- 项目类别:Continuing Grant 
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:2318977 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:2246606 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
Statistical Inference for Optimal Transport
最佳运输的统计推断
- 批准号:2310632 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Standard Grant 
Online Inverse Optimal Transport for Societal Flows
社会流量的在线逆最优运输
- 批准号:EP/X010503/1 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Research Grant 
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:23H01136 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Grant-in-Aid for Scientific Research (B) 
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
- 批准号:2313454 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Continuing Grant 
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
- 批准号:2345556 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Continuing Grant 
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:2246611 
- 财政年份:2023
- 资助金额:$ 24万 
- 项目类别:Standard Grant 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



