Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
基本信息
- 批准号:2207281
- 负责人:
- 金额:$ 12.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns work in harmonic analysis, also known as Fourier analysis. Harmonic analysis is a subject about the Fourier transform, which decomposes a function into its constituent frequencies. In other words, by taking the Fourier transform we effectively write a function as a superposition of monochromatic waves (waves with only one frequency). Of particular interest are the following restriction type problems: How large can a function be, in the pointwise sense or in some averaged sense, if its frequency lives in a particular restricted set? People have found that if the restricted frequency set is "curved", for example being the unit sphere, very nontrivial estimates about the function can be obtained/expected. This is useful in understanding physics phenomena dictated by certain natural partial differential equations such as the Schrodinger equation or the wave equation. Moreover, restriction type problems also turn out to be the key to the understanding of certain behaviors of natural numbers. It turns out that, for example, once people understand well on properties on waves whose frequencies are perfect 10-th powers, they can consequently answer a variety of questions on representing a natural number as a sum of a few perfect 10-th powers.In this project, the PI proposes to study restriction type problems: If we have a subset M (usually a curved submanifold or a fractal set) in the frequency space and some measure in the physical space, we want to bound some norm of a function with respect of the given measure whenever the frequency support of that function is in the given M. One proposed direction is Stein's Restriction Conjecture, where the measure is just the Lebesgue measure and the manifold is the unit paraboloid. The PI is also interested in the situations when the measure is a fractal measure, or when M is a moment manifold or a fractal set. For most questions of this type, the optimal estimates are far from being well understood. The goal of this research would be to obtain new estimates (i.e. estimates with improved exponents) in the above setting. In particular, it is anticipated that improvements on Stein's conjecture can be obtained when this project develops. For the proposed approach, the PI anticipates a subset of analytic (induction on scales, decoupling and refined Strichartz type reasoning), algebraic (the polynomial method, differential geometry and real algebraic geometry), combinatorial (Multilinear Kakeya, sum-product theory, etc.) and geometric measure theoretic (radial projection theory, etc.) tools can come into play. He also anticipates emerging new connections between harmonic analysis and nearby areas will arise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目涉及谐波分析,也称为傅立叶分析。谐波分析是一门关于傅里叶变换的学科,傅里叶变换将函数分解成其组成频率。换句话说,通过傅里叶变换,我们有效地将函数写为单色波(只有一个频率的波)的叠加。特别感兴趣的是以下限制类型的问题:多大可以是一个函数,在逐点意义上或在一些平均意义上,如果它的频率生活在一个特定的限制集?人们已经发现,如果受限频率集是“弯曲的”,例如是单位球面,则可以获得/期望关于函数的非常非平凡的估计。这对于理解某些自然偏微分方程(如薛定谔方程或波动方程)所决定的物理现象是有用的。此外,限制型问题也是理解自然数某些行为的关键。例如,人们一旦对频率为完全10次方的波的性质有了很好的理解,就可以回答将自然数表示为几个完全10次方之和的各种问题。在本项目中,PI提出研究限制型问题:如果我们有一个子集M(通常是弯曲的子流形或分形集)在频率空间和一些措施在物理空间,我们希望当函数的频率支集在给定的M中时,该函数关于给定的测度的某个范数有界。一个建议的方向是斯坦的限制猜想,其中的措施只是勒贝格措施和流形是单位抛物面。PI也感兴趣的情况下,当措施是一个分形措施,或当M是一个时刻流形或分形集。对于大多数这类问题,最优估计还远未得到很好的理解。本研究的目标是在上述环境中获得新的估计(即具有改进指数的估计)。特别是,预计改进斯坦因猜想可以得到当这个项目的发展。对于所提出的方法,PI预期的子集分析(归纳尺度,解耦和细化的Hohartz型推理),代数(多项式方法,微分几何和真实的代数几何),组合(多线性Kakeya,和积理论等)。和几何测度理论(径向投影理论等)工具可以发挥作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative Hilbert Irreducibility and Almost Prime Values of Polynomial Discriminants
多项式判别式的定量希尔伯特不可约性和几乎素值
- DOI:10.1093/imrn/rnab296
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Anderson, Theresa C;Gafni, Ayla;Lemke Oliver, Robert J;Lowry-Duda, David;Shakan, George;Zhang, Ruixiang
- 通讯作者:Zhang, Ruixiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruixiang Zhang其他文献
Improved bounds on number fields of small degree
改进小次数数域的界限
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. Anderson;A. Gafni;Kevin A. Hughes;R. Oliver;David Lowry;F. Thorne;Jiuya Wang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
An Evolutionary Algorithm for Trajectory Based Gait Generation of Biped Robot
基于轨迹的双足机器人步态生成的进化算法
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ruixiang Zhang;P. Vadakkepat - 通讯作者:
P. Vadakkepat
How Far Are We from Intelligent Visual Deductive Reasoning?
我们离智能视觉演绎推理还有多远?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yizhe Zhang;He Bai;Ruixiang Zhang;Jiatao Gu;Shuangfei Zhai;J. Susskind;N. Jaitly - 通讯作者:
N. Jaitly
Refinement of ZnAlsub2/subOsub4/sub crystal in ZnO–Alsub2/subOsub3/sub–SiOsub2/sub glass-ceramics by application of thermoelectric coupling field
通过应用热电耦合场细化 ZnO–Al₂O₃–SiO₂ 微晶玻璃中的 ZnAl₂O₄ 晶体
- DOI:
10.1016/j.ceramint.2022.01.355 - 发表时间:
2022-05-15 - 期刊:
- 影响因子:5.600
- 作者:
Lanlin Yi;Ruixiang Zhang;Fanhou Kong;Zelin Chen;Xue Liang;Yanzhao Rao;Dan Wang;Hong Jiang;Changjiu Li - 通讯作者:
Changjiu Li
A stationary set method for estimating oscillatory integrals
估计振荡积分的平稳集方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Basu;Shaoming Guo;Ruixiang Zhang;Pavel Zorin - 通讯作者:
Pavel Zorin
Ruixiang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruixiang Zhang', 18)}}的其他基金
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
- 批准号:
2143989 - 财政年份:2022
- 资助金额:
$ 12.97万 - 项目类别:
Continuing Grant
Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
- 批准号:
1856541 - 财政年份:2019
- 资助金额:
$ 12.97万 - 项目类别:
Standard Grant
相似海外基金
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Operating Grants
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
- 批准号:
NE/X014134/1 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Research Grant
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
- 批准号:
2239668 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Continuing Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
- 批准号:
2247469 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
- 批准号:
495568 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Miscellaneous Programs
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
- 批准号:
2886293 - 财政年份:2023
- 资助金额:
$ 12.97万 - 项目类别:
Studentship