Integrating membrane processes into hydroponics systems to promote plant growth, recover added-value root exudates and recycle nutrients
将膜工艺集成到水培系统中,以促进植物生长、回收增值根系分泌物并回收养分
基本信息
- 批准号:EP/X018660/1
- 负责人:
- 金额:$ 25.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydroponics are controlled soilless agricultural systems that enable crops to be grown out of season on land otherwise poorly suited for crop production. In 2015, hydroponic farming was estimated to be worth $21.4 billion, with an expected annual growth of 7%. Hydroponic farms have several advantages over traditional farming, including 3 to 10 times more plant production per unit space, and up to 90% more efficient use of water in well-managed farms. Many horticultural crops are routinely grown in commercial vertical hydroponic farms because of the high quality and yields these systems provide. However, plants in hydroponic culture exude high amounts of phytochemicals into the nutrient solution. Continuous recycling of nutrient solutions in closed hydroponic systems causes these phytochemicals to accumulate, leading to autotoxicity. Replacing the nutrient solution is typical, but is costly, labour-intensive, inefficient and causes system downtime.In contrast, phytochemicals extracted from plant wastes are increasingly finding a range of technological applications, offering additional revenue within a circular economy. Plants exude many metabolites from their roots, such as polyphenols, which have antioxidant properties that promote human health, along with molecules that have roles in regulating plant growth and development, and in plant-microbe interactions. Root exudates are therefore a potential source of novel activities for use as plant biostimulants or plant protection products.This project seeks to use hydroponic cultivation of pea shoots as a model system to solve autotoxicity problems and allow nutrient recycling, whilst simultaneously exploiting efficient membrane separation to recover organic molecules from root exudates and evaluate their properties. To achieve this, two parallel approaches will be followed to minimise the negative effects of phytotoxic exudates. First, we will seek to optimise the growth environment (recirculation flow, temperature, etc.) to understand how hydroponic culture conditions influence the production of phytotoxins. Secondly, we will try to establish a semi-pilot scale membrane filtration process within a hydroponic system to continuously remove exudates. Since root exudates may contain valuable compounds (e.g. in human/animal nutrition) or can be screened for novel activities (e.g. as plant biostimulants or antimicrobial agents), such integrated filtration provides additional opportunities to exploit the fractionated phytochemicals. The proposal is multidisciplinary and involves groups of various complementary backgrounds. In particular, the project involves chemical/bio-process engineering (nutrient composition and/or flow rates to facilitate the production and recovery of exudates), membrane science (use of appropriate membranes), analytical chemistry (use appropriate methodologies to characterise the composition of the exudates), and plant physiology (assessing plant growth and in-vitro and in-vivo bioassays to identify novel applications of exudates). If successful, this innovative project could revolutionise hydroponic culture systems. Our results will provide evidence for the technological feasibility of using merged systems for future soilless plant growth and chemical-producing farms. When developed further, our ideas will contribute towards establishing next generation biorefinery principles, able to isolate valuable chemicals from the plant root system while producing more crop biomass. In summary, we propose a highly innovative, but relatively simple, chemical-free and scalable process to stimulate the production and recovery of compounds from hydroponic exudates. This will maximize plant growth and resolve an existing commercial problem of autotoxicity in such systems, whilst simultaneously introducing the potential for new revenue routes for hydroponic farming.
水培是一种受控的无土农业系统,使作物能够在不适合作物生产的土地上生长。2015年,水培农业的价值估计为214亿美元,预计年增长率为7%。与传统农业相比,水培农场有几个优势,包括每单位空间的植物产量增加3到10倍,管理良好的农场的水资源利用效率提高90%。许多园艺作物通常在商业垂直水培农场中种植,因为这些系统提供高质量和产量。然而,水培植物向营养液中分泌大量的植物化学物质。在封闭的水培系统中,营养液的持续循环会导致这些植物化学物质的积累,导致自毒作用。更换营养液是一种常见的方法,但成本高、劳动密集型、效率低,并会导致系统停机。相反,从植物废料中提取的植物化学物质越来越多地被用于一系列技术应用,在循环经济中提供额外的收入。植物从其根部分泌出许多代谢物,如多酚,其具有促进人类健康的抗氧化特性,沿着调节植物生长和发育以及植物-微生物相互作用的分子。因此,根系分泌物是一个潜在的新的活动,用作植物生物刺激剂或植物保护products.This项目旨在使用水培豌豆苗作为一个模型系统,以解决自毒问题,并允许养分循环,同时利用有效的膜分离,以回收有机分子从根系分泌物和评估其属性。为了实现这一目标,将遵循两种平行的方法,以尽量减少植物毒性渗出物的负面影响。首先,我们将寻求优化生长环境(再循环流量,温度等)。了解水培条件如何影响植物毒素的产生。其次,我们将尝试建立一个半中试规模的膜过滤过程中的水培系统,以连续去除渗出物。由于根分泌物可能含有有价值的化合物(例如在人类/动物营养中)或可以筛选新的活性(例如作为植物生物刺激剂或抗微生物剂),因此这种集成过滤提供了利用分级植物化学物质的额外机会。这项建议是多学科的,涉及各种互补背景的团体。特别是,该项目涉及化学/生物过程工程(营养成分和/或流速,以促进渗出物的产生和回收),膜科学(使用适当的膜),分析化学(使用适当的方法来分析渗出物的成分),和植物生理学(评估植物生长和体外和体内生物测定,以确定渗出物的新应用)。如果成功,这个创新项目可能会彻底改变水培系统。我们的研究结果将为未来无土植物生长和化学生产农场使用合并系统的技术可行性提供证据。当进一步发展时,我们的想法将有助于建立下一代生物精炼原理,能够从植物根系中分离出有价值的化学物质,同时生产更多的作物生物质。总之,我们提出了一个高度创新的,但相对简单的,无化学品和可扩展的过程,以刺激生产和回收的化合物从水培渗出物。这将最大限度地提高植物生长,并解决现有的自毒性在这样的系统中的商业问题,同时引入新的收入途径的水耕法的潜力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanouil Papaioannou其他文献
Rapid estimation of natural pigments in olive and avocado oils using a colorimetric sensor
使用比色传感器快速估算橄榄油和鳄梨油中的天然色素
- DOI:
10.1016/j.jfca.2025.107773 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.600
- 作者:
Natasha Dantas Lorenzo;Roney Alves da Rocha;Emmanouil Papaioannou;Leticia Louize Gonçalves Tessaro;Cleiton Antônio Nunes - 通讯作者:
Cleiton Antônio Nunes
Emmanouil Papaioannou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanouil Papaioannou', 18)}}的其他基金
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
- 批准号:
EP/Y032004/1 - 财政年份:2024
- 资助金额:
$ 25.63万 - 项目类别:
Research Grant
Bio-GENTLE Green membrane bioseparation for circular economy
Bio-GENTLE 绿色膜生物分离促进循环经济
- 批准号:
EP/Y031997/1 - 财政年份:2024
- 资助金额:
$ 25.63万 - 项目类别:
Research Grant
相似国自然基金
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
新跨膜因子Angel Face调控质膜向自噬体膜转化的机理研究
- 批准号:92054109
- 批准年份:2020
- 资助金额:82.0 万元
- 项目类别:重大研究计划
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
PI(3,5)P2介导溶酶体与黑素小体互作调控黑素小体发生的分子细胞机制
- 批准号:92054102
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
细胞骨架对鞭毛敏感蛋白FLS2胞吞及其免疫调控机制的研究
- 批准号:32000483
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
- 批准号:92054105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
胚体类器官研究Wnt-PCP通路介导基底膜定向分泌与运输的分子机制
- 批准号:32000553
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
关于Tetraspanin富集结构域及迁移体的形成机制的研究
- 批准号:32070691
- 批准年份:2020
- 资助金额:58.0 万元
- 项目类别:面上项目
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
- 批准号:92054106
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
相似海外基金
Probing SNARE assembly and disassembly in vitro and in live cells
在体外和活细胞中探测 SNARE 组装和拆卸
- 批准号:
10679644 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Synthetic circuits for therapeutic platelet production and immunomodulation
用于治疗性血小板生成和免疫调节的合成回路
- 批准号:
10745237 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Sensory Ion Channel Modulation by Bioactive Lipids
生物活性脂质对感觉离子通道的调节
- 批准号:
10622095 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Molecular mechanisms of proton-coupled dynamic processes in biology
生物学中质子耦合动态过程的分子机制
- 批准号:
10552201 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Biopharmaceuticals purification by continuous membrane-assisted crystallization achieving lower cost and intensified processes (BIOPURE)
通过连续膜辅助结晶进行生物制药纯化,实现更低的成本和强化工艺 (BIOPURE)
- 批准号:
10082780 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
EU-Funded
Using Peripheral Microglial Exosomes to predict brain inflammation in the human Parkinson’s brain
使用外周小胶质细胞外泌体预测人类帕金森病大脑的炎症
- 批准号:
10665477 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Effect of dietary restriction on intestinal stem cell aging
饮食限制对肠道干细胞衰老的影响
- 批准号:
10823900 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Targeting the allosteric sodium site with novel probes for delta opioid receptor
用新型 δ 阿片受体探针靶向变构钠位点
- 批准号:
10892532 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
The Impact of Normative Aging and Alzheimers Disease on Fear based Disorders and Amygdala Dysfunction
正常衰老和阿尔茨海默病对恐惧障碍和杏仁核功能障碍的影响
- 批准号:
10889548 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别: