Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective

协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角

基本信息

  • 批准号:
    2208272
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Graph-structured data is ubiquitous in scientific and artificial intelligence applications, for instance, particle physics, computational chemistry, drug discovery, neural science, recommender systems, robotics, social networks, and knowledge graphs. Graph neural networks (GNNs) have achieved tremendous success in a broad class of graph learning tasks, including graph node classification, graph edge prediction, and graph generation. Nevertheless, there are several bottlenecks of GNNs: 1) In contrast to many deep networks such as convolutional neural networks, it has been noticed that increasing the depth of GNNs results in a severe accuracy degradation, which has been interpreted as over-smoothing in the machine learning community. 2) The performance of GNNs relies heavily on a sufficient number of labeled graph nodes; the prediction of GNNs will become significantly less reliable when less labeled data is available. This research aims to address these challenges by developing new mathematical understanding of GNNs and theoretically-principled algorithms for graph deep learning with less training data. The project will train graduate students and postdoctoral associates through involvement in the research. The project will also integrate the research into teaching to advance data science education.This project aims to develop next-generation continuous-depth GNNs leveraging computational mathematics tools and insights and to advance data-driven scientific simulation using the new GNNs. This project has three interconnected thrusts that revolve around pushing the envelope of theory and practice in graph deep learning with limited supervision using PDE and harmonic analysis tools: 1) developing a new generation of diffusion-based GNNs that are certifiable to learning with deep architectures and less training data; 2) developing a new efficient attention-based approach for learning graph structures from the underlying data accompanied by uncertainty quantification; and 3) application validation in learning-assisted scientific simulation and multi-modal learning and software development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形结构的数据在科学和人工智能应用中无处不在,例如粒子物理,计算化学,药物发现,神经科学,推荐系统,机器人技术,社交网络和知识图。图形神经网络(GNN)在广泛的图形学习任务中取得了巨大的成功,包括图节点分类,图形边缘预测和图形生成。然而,有几种GNN的瓶颈:1)与许多深层网络(例如卷积神经网络)相反,已经注意到,增加GNNS的深度会导致严重的准确性降解,这已被解释为机器学习社区中的过度易光度。 2)GNN的性能在很大程度上取决于足够数量的标记图节点;当可用的标记数据较少时,GNN的预测将变得明显降低。这项研究旨在通过对GNN和理论原理算法进行新的数学理解来解决这些挑战,以使用较少的培训数据来绘制深度学习。该项目将通过参与研究来培训研究生和博士后同事。该项目还将将研究整合到进步数据科学教育中。该项目旨在开发下一代连续深度的GNN,利用计算数学工具和见解,并使用新的GNN来推进数据驱动的科学模拟。该项目具有三个相互连接的推力,这些推力围绕着使用PDE和谐波分析工具有限的监督来推动理论和实践的信封:1)开发新一代的基于扩散的GNN,这些基于扩散的GNN可以通过深度建筑和较少的培训数据进行认证,并且可以进行学习; 2)从基础数据中开发一种新的基于注意力的方法来学习图形结构,并伴随着不确定性量化; 3)在学习辅助科学模拟和多模式学习和软件开发中的应用验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Primal-Dual Framework for Transformers and Neural Networks
  • DOI:
  • 发表时间:
    2024-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nguyen;Tam Nguyen;Nhat Ho;A. Bertozzi;Richard Baraniuk;S. Osher
  • 通讯作者:
    T. Nguyen;Tam Nguyen;Nhat Ho;A. Bertozzi;Richard Baraniuk;S. Osher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanley Osher其他文献

Noise attenuation in a low-dimensional manifold
低维流形中的噪声衰减
  • DOI:
    10.1190/geo2016-0509.1
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Siwei Yu;Stanley Osher;Jianwei Ma;Zuoqiang Shi
  • 通讯作者:
    Zuoqiang Shi
THE LINEARIZED BREGMAN
线性化布雷格曼
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JIAN;Stanley Osher;Zuowei Shen
  • 通讯作者:
    Zuowei Shen
Efficient Computation of Mean field Control based Barycenters from Reaction-Diffusion Systems
基于反应扩散系统重心的平均场控制的高效计算
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arjun Vijaywargiya;Guosheng Fu;Stanley Osher;Wuchen Li
  • 通讯作者:
    Wuchen Li
Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows
近似一维 Wasserstein 梯度流的神经网络投影方案的数值分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinzhe Zuo;Jiaxi Zhao;Shu Liu;Stanley Osher;Wuchen Li
  • 通讯作者:
    Wuchen Li
UROPEPSIN EXCRETION BY MAN. I. THE SOURCE, PROPERTIES AND ASSAY OF UROPEPSIN.
人的尿蛋白酶排泄。

Stanley Osher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanley Osher', 18)}}的其他基金

Algorithms for Threat Detection in Sensor Systems for Analyzing Chemical and Biological Systems Based on Compressive Sensing and L1 Related Optimization
基于压缩感知和 L1 相关优化的用于分析化学和生物系统的传感器系统中的威胁检测算法
  • 批准号:
    1118971
  • 财政年份:
    2011
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
  • 批准号:
    0914561
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Nonlocal Variational Processing of Image Albums
图像相册的非局部变分处理
  • 批准号:
    0714087
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
New PDE Based Models and Numerical Techniques in Level Set Surface Processing, Imaging Science and Materials Science
水平集表面处理、成像科学和材料科学中基于偏微分方程的新模型和数值技术
  • 批准号:
    0312222
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
  • 批准号:
    0321917
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Advances in Level Set and Related Methods: New Technology and Applications
水平集及相关方法的进展:新技术与应用
  • 批准号:
    0074735
  • 财政年份:
    2000
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Development, Analysis and Application of Numerical Methods for Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
  • 批准号:
    9706827
  • 财政年份:
    1997
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
  • 批准号:
    9626703
  • 财政年份:
    1996
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Development, Analysis, and Applications for Numerical Methods for Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程数值方法的发展、分析和应用
  • 批准号:
    9404942
  • 财政年份:
    1994
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Development, Analysis and Applications for Numerical Methodsfor Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
  • 批准号:
    9103104
  • 财政年份:
    1991
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多算法组合协作的城市空中交通建模分析与优化管控研究
  • 批准号:
    72301278
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于领域适应算法的人机协作学习能力泛化关键技术研究
  • 批准号:
    62277002
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于领域适应算法的人机协作学习能力泛化关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
移动群智感知中的协作优化关键算法研究
  • 批准号:
    62272302
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
移动群智感知中的协作优化关键算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了