Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
基本信息
- 批准号:0914561
- 负责人:
- 金额:$ 29.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal introduces a class of novel inverse problems with applications to, and motivated by anti-terrorism efforts, such as surveillance and discovery of harmful comtamination sources in unknown battle fields as well as urban regions. Unlike the typical settings of a large class of inverse problems, the research involves inverting Radon transforms from very sparse samples and constraints involving parttial differential equations. These considerations present interesting challenges in both mathematical analysis and modeling as well as in the design and implementation of appropriate computational methods. In addition, this proposal introduces novel strategies which greatly reduce the complexity for the inversion.State-of-the-art numerical techniques that have been in development by the PI and his collaborators, such as the use of Bregman iteration in imaging and compressed sensing and inverse problem applications will be central in meeting these challenges. This research has immediate and direct implications for anti-terrorism efforts, such as surveillance and discovery of harmfulcontamination sources in unknown battlefields as well as urban regions.A desired capability is to reconstruct and predict the whereabouts and the extent of an offending chemical and/or biological cloud from passive, remote measurements from an array of sensors. A very limited numberof stationary or moving sensors receive and record infrared radiationfrom the scene containing the cloud (plume) in addition to the radiationfrom other elements in the scene, such as the background and interveningatmosphere. The sensors are assumed to be able to resolve the spectrum of the receivedtotal radiation and the spectral signatures of chemicals ofinterest may be known. This research will help to move the sensors to optimal locations, to detect the locations and contents of thesources, to predict the plumes' behavior and ultimately to minimize the damage caused by such events.
该建议介绍了一类新的反问题的应用程序,并出于反恐工作,如在未知的战场以及城市地区的有害污染源的监测和发现。与一大类反问题的典型设置不同,该研究涉及从非常稀疏的样本和涉及偏微分方程的约束中反演Radon变换。这些考虑在数学分析和建模以及适当的计算方法的设计和实现中提出了有趣的挑战。此外,该提案还引入了新的策略,大大降低了反演的复杂性。PI及其合作者一直在开发的最先进的数值技术,例如在成像和压缩传感以及逆问题应用中使用Bregman迭代,将是应对这些挑战的核心。 该研究对反恐工作有着直接和直接的意义,例如在未知战场和城市地区监视和发现有害污染源。一种期望的能力是通过传感器阵列的被动远程测量来重建和预测有害化学和/或生物云的位置和范围。一个非常有限数量的固定或移动的传感器接收和记录红外辐射的场景包含云(羽流)除了辐射从其他元素在场景中,如背景和干预的atmosphere。假定传感器能够分辨接收到的总辐射的光谱,并且可以知道感兴趣的化学品的光谱特征。这项研究将有助于将传感器移动到最佳位置,以检测烟雾的位置和内容,预测羽流的行为,并最终将此类事件造成的损害降到最低。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanley Osher其他文献
Unbalanced and Partial $$L_1$$ Monge–Kantorovich Problem: A Scalable Parallel First-Order Method
- DOI:
10.1007/s10915-017-0600-y - 发表时间:
2017-11-15 - 期刊:
- 影响因子:3.300
- 作者:
Ernest K. Ryu;Wuchen Li;Penghang Yin;Stanley Osher - 通讯作者:
Stanley Osher
Noise attenuation in a low-dimensional manifold
低维流形中的噪声衰减
- DOI:
10.1190/geo2016-0509.1 - 发表时间:
2017-07 - 期刊:
- 影响因子:3.3
- 作者:
Siwei Yu;Stanley Osher;Jianwei Ma;Zuoqiang Shi - 通讯作者:
Zuoqiang Shi
Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows
近似一维 Wasserstein 梯度流的神经网络投影方案的数值分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinzhe Zuo;Jiaxi Zhao;Shu Liu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
Efficient Computation of Mean field Control based Barycenters from Reaction-Diffusion Systems
基于反应扩散系统重心的平均场控制的高效计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arjun Vijaywargiya;Guosheng Fu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Stanley Osher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanley Osher', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208272 - 财政年份:2022
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Algorithms for Threat Detection in Sensor Systems for Analyzing Chemical and Biological Systems Based on Compressive Sensing and L1 Related Optimization
基于压缩感知和 L1 相关优化的用于分析化学和生物系统的传感器系统中的威胁检测算法
- 批准号:
1118971 - 财政年份:2011
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Nonlocal Variational Processing of Image Albums
图像相册的非局部变分处理
- 批准号:
0714087 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
New PDE Based Models and Numerical Techniques in Level Set Surface Processing, Imaging Science and Materials Science
水平集表面处理、成像科学和材料科学中基于偏微分方程的新模型和数值技术
- 批准号:
0312222 - 财政年份:2003
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
- 批准号:
0321917 - 财政年份:2003
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Advances in Level Set and Related Methods: New Technology and Applications
水平集及相关方法的进展:新技术与应用
- 批准号:
0074735 - 财政年份:2000
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Development, Analysis and Application of Numerical Methods for Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
- 批准号:
9706827 - 财政年份:1997
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
- 批准号:
9626703 - 财政年份:1996
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Development, Analysis, and Applications for Numerical Methods for Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程数值方法的发展、分析和应用
- 批准号:
9404942 - 财政年份:1994
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Development, Analysis and Applications for Numerical Methodsfor Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
- 批准号:
9103104 - 财政年份:1991
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant