Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
基本信息
- 批准号:0914561
- 负责人:
- 金额:$ 29.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal introduces a class of novel inverse problems with applications to, and motivated by anti-terrorism efforts, such as surveillance and discovery of harmful comtamination sources in unknown battle fields as well as urban regions. Unlike the typical settings of a large class of inverse problems, the research involves inverting Radon transforms from very sparse samples and constraints involving parttial differential equations. These considerations present interesting challenges in both mathematical analysis and modeling as well as in the design and implementation of appropriate computational methods. In addition, this proposal introduces novel strategies which greatly reduce the complexity for the inversion.State-of-the-art numerical techniques that have been in development by the PI and his collaborators, such as the use of Bregman iteration in imaging and compressed sensing and inverse problem applications will be central in meeting these challenges. This research has immediate and direct implications for anti-terrorism efforts, such as surveillance and discovery of harmfulcontamination sources in unknown battlefields as well as urban regions.A desired capability is to reconstruct and predict the whereabouts and the extent of an offending chemical and/or biological cloud from passive, remote measurements from an array of sensors. A very limited numberof stationary or moving sensors receive and record infrared radiationfrom the scene containing the cloud (plume) in addition to the radiationfrom other elements in the scene, such as the background and interveningatmosphere. The sensors are assumed to be able to resolve the spectrum of the receivedtotal radiation and the spectral signatures of chemicals ofinterest may be known. This research will help to move the sensors to optimal locations, to detect the locations and contents of thesources, to predict the plumes' behavior and ultimately to minimize the damage caused by such events.
该提案引入了一类新的逆问题,并由反恐努力进行应用,并引起了诸如未知战场和城市地区的有害稳定资源的诸如监视和发现有害的稳定源。与大类反问题的典型设置不同,该研究涉及反转ra倒的稀疏样本和涉及零件微分方程的约束。这些考虑因素在数学分析和建模以及适当的计算方法的设计和实施中都提出了有趣的挑战。此外,该提案还介绍了新的策略,这些策略大大降低了反转的复杂性。PI及其合作者正在开发的状态数值技术,例如将Bregman迭代在成像中使用和压缩感测和倒数问题的应用将是应对这些挑战的核心。 这项研究对反恐努力具有直接的直接影响,例如在未知战场和城市地区发现和发现有害污染源的监视和发现。所需的能力是重建和预测来自自由式的远程测量,来自传感器的有源化学和/或来自远程测量的有问题的化学和/或生物云的范围。除了从场景中的其他元素(例如背景和介入的趋势)中,除了构成云(羽流)的场景外,一个非常有限的数量固定或移动传感器从包含云(羽流)的场景接收和记录红外辐射。假定传感器能够解析接收到的辐射的光谱,并且可能已知具有引人入胜的化学物质特征。这项研究将有助于将传感器转移到最佳位置,检测这些象所的位置和内容,以预测羽毛的行为,并最终最大程度地减少这些事件造成的损害。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanley Osher其他文献
Noise attenuation in a low-dimensional manifold
低维流形中的噪声衰减
- DOI:
10.1190/geo2016-0509.1 - 发表时间:
2017-07 - 期刊:
- 影响因子:3.3
- 作者:
Siwei Yu;Stanley Osher;Jianwei Ma;Zuoqiang Shi - 通讯作者:
Zuoqiang Shi
THE LINEARIZED BREGMAN
线性化布雷格曼
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
JIAN;Stanley Osher;Zuowei Shen - 通讯作者:
Zuowei Shen
Efficient Computation of Mean field Control based Barycenters from Reaction-Diffusion Systems
基于反应扩散系统重心的平均场控制的高效计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arjun Vijaywargiya;Guosheng Fu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows
近似一维 Wasserstein 梯度流的神经网络投影方案的数值分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinzhe Zuo;Jiaxi Zhao;Shu Liu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
UROPEPSIN EXCRETION BY MAN. I. THE SOURCE, PROPERTIES AND ASSAY OF UROPEPSIN.
人的尿蛋白酶排泄。
- DOI:
10.1172/jci102034 - 发表时间:
1948 - 期刊:
- 影响因子:0
- 作者:
I. Mirsky;Stanley Block;Stanley Osher;R. Broh - 通讯作者:
R. Broh
Stanley Osher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanley Osher', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208272 - 财政年份:2022
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Algorithms for Threat Detection in Sensor Systems for Analyzing Chemical and Biological Systems Based on Compressive Sensing and L1 Related Optimization
基于压缩感知和 L1 相关优化的用于分析化学和生物系统的传感器系统中的威胁检测算法
- 批准号:
1118971 - 财政年份:2011
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Nonlocal Variational Processing of Image Albums
图像相册的非局部变分处理
- 批准号:
0714087 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
New PDE Based Models and Numerical Techniques in Level Set Surface Processing, Imaging Science and Materials Science
水平集表面处理、成像科学和材料科学中基于偏微分方程的新模型和数值技术
- 批准号:
0312222 - 财政年份:2003
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
- 批准号:
0321917 - 财政年份:2003
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Advances in Level Set and Related Methods: New Technology and Applications
水平集及相关方法的进展:新技术与应用
- 批准号:
0074735 - 财政年份:2000
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Development, Analysis and Application of Numerical Methods for Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
- 批准号:
9706827 - 财政年份:1997
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
- 批准号:
9626703 - 财政年份:1996
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Development, Analysis, and Applications for Numerical Methods for Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程数值方法的发展、分析和应用
- 批准号:
9404942 - 财政年份:1994
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Development, Analysis and Applications for Numerical Methodsfor Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
- 批准号:
9103104 - 财政年份:1991
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant