Development, Analysis and Application of Numerical Methods for Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
基本信息
- 批准号:9706827
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-15 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706827 Stanley Osher This research is concerned with the accurate and efficient computation of "irregular" solutions of partial differential equations (PDEs). This includes solutions with discontinuities, singularities, fine scale structure, or persistent oscillations. The main topics include (1) kinetic formulations of nonlinear PDE's and applications; (2) interface capturing through the level set method; (3) discontinuity capturing based on ideas developed for the numerical solution of conservation laws; and (4) numerical and analytical study of oscillations and critical threshold phenomena. The proposed research will impact numerous areas of science and technology. With the advent of modern computers, formerly intractable problems can be solved accurately. This, of course, requires accurate and convergent algorithms for these difficult nonlinear and computationally intense problems. The algorithms formerly developed by this group are already in wide use throughout the country in national laboratories and industry. The proposed methods to be developed here will be useful in a host of applications including combustion, oil recovery, crystal growth, electromagnetic and acoustic scattering, thin film semiconductor growth, aircraft design, to name just a few.
9706827 Stanley Osher 本研究系关于偏微分方程之“不规则”解之精确且有效率之计算。 这包括具有不连续性、奇异性、精细尺度结构或持续振荡的解。 主要议题包括:(1)非线性偏微分方程的动力学公式及其应用;(2)通过水平集方法捕获界面;(3)基于守恒律数值解思想的不连续性捕获;(4)振荡和临界阈值现象的数值和分析研究。 拟议的研究将影响许多科学和技术领域。 随着现代计算机的出现,以前难以解决的问题可以得到精确的解决。 当然,这需要精确和收敛的算法,这些困难的非线性和计算密集的问题。 该小组以前开发的算法已经在全国各地的国家实验室和工业中广泛使用。 这里提出的方法将是有用的,在主机的应用,包括燃烧,石油回收,晶体生长,电磁和声散射,薄膜半导体生长,飞机设计,仅举几例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanley Osher其他文献
Unbalanced and Partial $$L_1$$ Monge–Kantorovich Problem: A Scalable Parallel First-Order Method
- DOI:
10.1007/s10915-017-0600-y - 发表时间:
2017-11-15 - 期刊:
- 影响因子:3.300
- 作者:
Ernest K. Ryu;Wuchen Li;Penghang Yin;Stanley Osher - 通讯作者:
Stanley Osher
Noise attenuation in a low-dimensional manifold
低维流形中的噪声衰减
- DOI:
10.1190/geo2016-0509.1 - 发表时间:
2017-07 - 期刊:
- 影响因子:3.3
- 作者:
Siwei Yu;Stanley Osher;Jianwei Ma;Zuoqiang Shi - 通讯作者:
Zuoqiang Shi
Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows
近似一维 Wasserstein 梯度流的神经网络投影方案的数值分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinzhe Zuo;Jiaxi Zhao;Shu Liu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
Efficient Computation of Mean field Control based Barycenters from Reaction-Diffusion Systems
基于反应扩散系统重心的平均场控制的高效计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arjun Vijaywargiya;Guosheng Fu;Stanley Osher;Wuchen Li - 通讯作者:
Wuchen Li
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Stanley Osher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanley Osher', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208272 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
Algorithms for Threat Detection in Sensor Systems for Analyzing Chemical and Biological Systems Based on Compressive Sensing and L1 Related Optimization
基于压缩感知和 L1 相关优化的用于分析化学和生物系统的传感器系统中的威胁检测算法
- 批准号:
1118971 - 财政年份:2011
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
- 批准号:
0914561 - 财政年份:2009
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Nonlocal Variational Processing of Image Albums
图像相册的非局部变分处理
- 批准号:
0714087 - 财政年份:2007
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
New PDE Based Models and Numerical Techniques in Level Set Surface Processing, Imaging Science and Materials Science
水平集表面处理、成像科学和材料科学中基于偏微分方程的新模型和数值技术
- 批准号:
0312222 - 财政年份:2003
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
Collaborative Research-ITR-High Order Partial Differential Equations: Theory, Computational Tools, and Applications in Image Processing, Computer Graphics, Biology, and Fluids
协作研究-ITR-高阶偏微分方程:理论、计算工具以及在图像处理、计算机图形学、生物学和流体中的应用
- 批准号:
0321917 - 财政年份:2003
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
Advances in Level Set and Related Methods: New Technology and Applications
水平集及相关方法的进展:新技术与应用
- 批准号:
0074735 - 财政年份:2000
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
- 批准号:
9626703 - 财政年份:1996
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Development, Analysis, and Applications for Numerical Methods for Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程数值方法的发展、分析和应用
- 批准号:
9404942 - 财政年份:1994
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
Development, Analysis and Applications for Numerical Methodsfor Nonlinear Partial Differential Equations
非线性偏微分方程数值方法的发展、分析与应用
- 批准号:
9103104 - 财政年份:1991
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Development of High-Precision Geospatial Information Utilization Methods in Urban and Regional Economic Analysis and Their Application to Spatial Causal Inference
城市和区域经济分析中高精度地理空间信息利用方法的发展及其在空间因果推理中的应用
- 批准号:
23K17559 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a method for targeted long-read methylation analysis and application to breast cancer specimens
靶向长读甲基化分析方法的开发及其在乳腺癌样本中的应用
- 批准号:
23H02467 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and application of operando soft x-ray measurement technique for simultaneous analysis of chemical state and structure
化学状态与结构同时分析的原位软X射线测量技术的开发与应用
- 批准号:
23K13710 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of a non-hydrostatic quasi-3D analysis method for flood flows and waves to elucidate sediment dynamics in estuarine areas
洪水流和波浪的非静水准三维分析方法的开发和应用,以阐明河口地区的沉积物动态
- 批准号:
23K04050 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development for clinical practical application by analysis of circulation tumor cells of hepatobiliary-pancreatic cancer
肝胆胰癌循环肿瘤细胞分析及临床应用研究进展
- 批准号:
23K14662 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Causal analysis study and AI: development of programs to reduce health inequalities and application to real world data
因果分析研究和人工智能:制定减少健康不平等的计划并将其应用于现实世界数据
- 批准号:
19KK0418 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Development of fluid analysis method considering connection to the elasto-plastic analysis of soil and its application to the soil-water coupling analysis
考虑与土壤弹塑性分析相关的流体分析方法的发展及其在土水耦合分析中的应用
- 批准号:
22K14324 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and practical validation of application version in process analysis of daily living activities for dementia
痴呆症日常生活活动流程分析应用程序版本的开发和实践验证
- 批准号:
22K11261 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and Application of the Growth Process of English Language Learners with an Awareness of Career Development Using Narrative Analysis
具有职业发展意识的英语学习者成长过程的叙事分析与应用
- 批准号:
22K00749 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new gas analyzer using differential pressure measurement system and its application to biogas analysis
新型差压测量系统气体分析仪的研制及其在沼气分析中的应用
- 批准号:
22K19047 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




