Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
基本信息
- 批准号:2208361
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graph-structured data is ubiquitous in scientific and artificial intelligence applications, for instance, particle physics, computational chemistry, drug discovery, neural science, recommender systems, robotics, social networks, and knowledge graphs. Graph neural networks (GNNs) have achieved tremendous success in a broad class of graph learning tasks, including graph node classification, graph edge prediction, and graph generation. Nevertheless, there are several bottlenecks of GNNs: 1) In contrast to many deep networks such as convolutional neural networks, it has been noticed that increasing the depth of GNNs results in a severe accuracy degradation, which has been interpreted as over-smoothing in the machine learning community. 2) The performance of GNNs relies heavily on a sufficient number of labeled graph nodes; the prediction of GNNs will become significantly less reliable when less labeled data is available. This research aims to address these challenges by developing new mathematical understanding of GNNs and theoretically-principled algorithms for graph deep learning with less training data. The project will train graduate students and postdoctoral associates through involvement in the research. The project will also integrate the research into teaching to advance data science education.This project aims to develop next-generation continuous-depth GNNs leveraging computational mathematics tools and insights and to advance data-driven scientific simulation using the new GNNs. This project has three interconnected thrusts that revolve around pushing the envelope of theory and practice in graph deep learning with limited supervision using PDE and harmonic analysis tools: 1) developing a new generation of diffusion-based GNNs that are certifiable to learning with deep architectures and less training data; 2) developing a new efficient attention-based approach for learning graph structures from the underlying data accompanied by uncertainty quantification; and 3) application validation in learning-assisted scientific simulation and multi-modal learning and software development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图结构数据在科学和人工智能应用中无处不在,例如粒子物理学、计算化学、药物发现、神经科学、推荐系统、机器人、社交网络和知识图谱。图神经网络(GNN)在广泛的图学习任务中取得了巨大的成功,包括图节点分类、图边缘预测和图生成。然而,GNN 存在几个瓶颈:1)与许多深度网络(例如卷积神经网络)相比,人们注意到增加 GNN 的深度会导致严重的精度下降,这在机器学习社区中被解释为过度平滑。 2)GNN的性能很大程度上依赖于足够数量的标记图节点;当可用的标记数据较少时,GNN 的预测将变得不太可靠。本研究旨在通过开发对 GNN 的新数学理解以及使用较少训练数据进行图深度学习的理论原理算法来应对这些挑战。该项目将通过参与研究来培训研究生和博士后。该项目还将研究融入教学,以推进数据科学教育。该项目旨在利用计算数学工具和见解开发下一代连续深度 GNN,并使用新的 GNN 推进数据驱动的科学模拟。该项目具有三个相互关联的主旨,围绕使用偏微分方程和调和分析工具在有限监督下推动图深度学习的理论和实践的极限:1)开发新一代基于扩散的 GNN,可通过深度架构和更少的训练数据进行学习; 2)开发一种新的有效的基于注意力的方法,用于从底层数据中学习图结构并伴随不确定性量化; 3)学习辅助科学模拟和多模式学习和软件开发中的应用验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A deterministic gradient-based approach to avoid saddle points
一种避免鞍点的基于确定性梯度的方法
- DOI:10.1017/s0956792522000316
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Kreusser, L. M.;Osher, S. J.;Wang, B.
- 通讯作者:Wang, B.
Efficient and Reliable Overlay Networks for Decentralized Federated Learning
- DOI:10.1137/21m1465081
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
- 通讯作者:Yifan Hua;Kevin Miller;A. Bertozzi;Chen Qian;Bao Wang
Implicit Graph Neural Networks: A Monotone Operator Viewpoint
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
- 通讯作者:Justin Baker;Qingsong Wang;C. Hauck;Bao Wang
Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum
- DOI:10.1007/s10915-023-02148-y
- 发表时间:2022-08
- 期刊:
- 影响因子:2.5
- 作者:Mengqi Hu;Y. Lou;Bao Wang;Ming Yan;Xiu Yang;Q. Ye
- 通讯作者:Mengqi Hu;Y. Lou;Bao Wang;Ming Yan;Xiu Yang;Q. Ye
How does momentum benefit deep neural networks architecture design? A few case studies
- DOI:10.1007/s40687-022-00352-0
- 发表时间:2021-10
- 期刊:
- 影响因子:1.2
- 作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
- 通讯作者:Bao Wang;Hedi Xia;T. Nguyen;S. Osher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Wang其他文献
Study on the startup characteristics of the methanogenic UASB reactor under acid condition at pH5.5
pH5.5酸性条件下产甲烷UASB反应器启动特性研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Jie Ding;Hongjian Liu;Chunmiao Liu;Wangbin Cheng;Luyan Zhang;Xianshu Liu;Nanqi Ren - 通讯作者:
Nanqi Ren
Effect of Municipal Solid Waste Incineration Fly Ash Leachate on the Hydraulic Performance of a Geosynthetic Clay Liner
城市生活垃圾焚烧飞灰渗滤液对土工合成粘土衬垫水力性能的影响
- DOI:
10.1007/s40996-021-00674-z - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Bao Wang;Xingling Dong;Tongtong Dou;Bizhou Ge - 通讯作者:
Bizhou Ge
Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
轻松制造空心 CuO 纳米立方体以增强锂/钠存储性能
- DOI:
10.1039/d1ce00704a - 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
Jie Zhao;Yuyan Zhao;Wen-Ce Yue;Shu-Min Zheng;Xue Li;Ning Gao;Ting Zhu;Yu-Jiao Zhang;Guang-Ming Xia;Bao Wang - 通讯作者:
Bao Wang
Heterogeneous Nucleation in Semicrystalline Polymers
- DOI:
10.15167/wang-bao_phd2020-03-20 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Bao Wang - 通讯作者:
Bao Wang
The influence of wind turbine blade rotation on anemometer
风力机叶片旋转对风速计的影响
- DOI:
10.1088/1742-6596/2280/1/012008 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yaqiang Zhou;Lizhu Tian;Zhiwen Jiang;Yapeng Li;Zhaohe Wu;Chenglong Qi;Y. Gou;Yonghe Xu;Dayu Du;Bao Wang;Yuan Wu;W. Feng;Peng Li - 通讯作者:
Peng Li
Bao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Wang', 18)}}的其他基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
- 批准号:
2152762 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Student Support: 18th IEEE International Conference on eScience
学生支持:第 18 届 IEEE 国际电子科学会议
- 批准号:
2219510 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
2110145 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924935 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant














{{item.name}}会员




