Addressing neuron-to-network energy-efficiency gap by investigating neuromorphic processors as a unified dynamical system
通过研究神经形态处理器作为统一的动态系统来解决神经元到网络的能效差距
基本信息
- 批准号:1935073
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates a fully-coupled, analog neuromorphic architecture where the entire learning network is designed as a unified dynamical system encoding information using short-term and long-term network dynamics. At the fundamental level, a single action potential generated by a biological neuron is not optimized for energy and consumes significantly more power than an equivalent floating-point operation in a Graphical Processing Unit (GPU) or a Tensor Processing Unit (TPU). Yet a population of coupled neurons in the human brain, using ~100 Giga coarse neural operations (or spikes) can learn and implement diverse functions compared to an application-specific deep-learning platform that typically use ~1 Peta 8-bit/16-bit floating-point operations or more. The intellectual merit of this proposal is addressing this neuron-to-network energy-efficiency gap by investigating a growth-transform neural network (GTNN) based dynamical systems framework for designing energy-efficient, real-time neuromorphic processors. First, the project is investigating how a GTNN can exploit population dynamics to improve system energy-efficiency, while optimizing a learning or task objective in real-time. Second, the project is investigating how short-term and long-term network dynamics can enable scaling the proposed GTNN to billions of neurons without the need for explicit spike-routing and by exploiting network's limit-cycle fixed-points as analog memory. Third, the project is investigating a continuous-time, analog GTNN processor that can be used to demonstrate the energy-efficiency of proposed approach compared to other benchmark neuromorphic and deep-learning processors. The project is also supporting open-source development of a GTNN simulator which will be disseminated to the neural network, neuromorphic engineering and neuroscience communities. The open-source tool will also form the basis for organizing tutorials and special sessions at IEEE conferences. The demonstration platforms developed through this project is being be used to connect with other NSF sponsored outreach programs at Washington University, which includes outreach to students belonging to underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一个完全耦合的模拟神经形态架构,其中整个学习网络被设计为一个统一的动态系统,使用短期和长期网络动态编码信息。在基本层面上,生物神经元产生的单个动作电位没有针对能量进行优化,并且比图形处理单元(GPU)或张量处理单元(TPU)中的等效浮点操作消耗更多的功率。然而,与通常使用1 Peta 8位/16位浮点运算或更多浮点运算的特定应用深度学习平台相比,人类大脑中的耦合神经元群体使用~100千兆的粗神经运算(或峰值)可以学习和实现各种功能。该提案的智力优势在于通过研究基于生长转换神经网络(GTNN)的动态系统框架来设计节能、实时的神经形态处理器,从而解决了神经元与网络之间的能量效率差距。首先,该项目正在研究GTNN如何利用种群动态来提高系统能源效率,同时实时优化学习或任务目标。其次,该项目正在研究短期和长期网络动态如何能够将提议的GTNN扩展到数十亿个神经元,而不需要明确的尖峰路由,并利用网络的极限环固定点作为模拟存储器。第三,该项目正在研究一种连续时间的模拟GTNN处理器,与其他基准神经形态和深度学习处理器相比,该处理器可用于证明所提出方法的能效。该项目还支持GTNN模拟器的开源开发,该模拟器将传播到神经网络、神经形态工程和神经科学社区。这个开源工具也将成为IEEE会议上组织教程和特别会议的基础。通过这个项目开发的示范平台被用来与华盛顿大学其他国家科学基金会赞助的外展项目联系起来,其中包括向属于代表性不足群体的学生提供外展服务。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resonant Machine Learning Based on Complex Growth Transform Dynamical Systems
- DOI:10.1109/tnnls.2020.2984267
- 发表时间:2019-08
- 期刊:
- 影响因子:10.4
- 作者:Oindrila Chatterjee;S. Chakrabartty
- 通讯作者:Oindrila Chatterjee;S. Chakrabartty
Using growth transform dynamical systems for spatio-temporal data sonification
使用增长变换动力系统进行时空数据超声处理
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Oindrila Chatterjee, Shantanu Chakrabartty
- 通讯作者:Oindrila Chatterjee, Shantanu Chakrabartty
A Spiking Neuron and Population Model Based on the Growth Transform Dynamical System
- DOI:10.3389/fnins.2020.00425
- 发表时间:2020-05-12
- 期刊:
- 影响因子:4.3
- 作者:Gangopadhyay, Ahana;Mehta, Darshit;Chakrabartty, Shantanu
- 通讯作者:Chakrabartty, Shantanu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shantanu Chakrabartty其他文献
A compact and energy-efficient ultrasound receiver using PTAT reference circuit
- DOI:
10.1016/j.mejo.2019.104656 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yarub Alazzawi;Oindrila Chatterjee;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Co-detection: Ultra-reliable nanoparticle-based electrical detection of biomolecules in the presence of large background interference
- DOI:
10.1016/j.bios.2010.08.067 - 发表时间:
2010-11-15 - 期刊:
- 影响因子:
- 作者:
Yang Liu;Ming Gu;Evangelyn C. Alocilja;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Shantanu Chakrabartty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shantanu Chakrabartty', 18)}}的其他基金
RCN-SC: Research Coordination Network for Design and Testing of Neuromorphic Integrated Circuits
RCN-SC:神经形态集成电路设计和测试的研究协调网络
- 批准号:
2332166 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
- 批准号:
2237004 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208770 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CPS:TTP Option: Synergy: Collaborative Research: Internet of Self-powered Sensors - Towards a Scalable Long-term Condition-based Monitoring and Maintenance of Civil Infrastructure
CPS:TTP 选项:协同:协作研究:自供电传感器互联网 - 实现民用基础设施可扩展的长期基于状态的监测和维护
- 批准号:
1646380 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1550096 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
STARSS: Small: Collaborative: Zero-Power Dynamic Signature for Trust Verification of Passive Sensors and Tags
STARSS:小型:协作:用于无源传感器和标签的信任验证的零功耗动态签名
- 批准号:
1525476 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1505767 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
SHF: Small: FAST: A Simulation and Analysis Framework for Designing Large-Scale Biomolecular-Silicon Hybrid Circuits
SHF:小型:FAST:用于设计大规模生物分子硅混合电路的仿真和分析框架
- 批准号:
1533905 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Self-powered Micro-sensing for Embedded and Implantable Structural Health Monitoring
职业:嵌入式和植入式结构健康监测自供电微传感的综合研究和教育
- 批准号:
1533532 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
AIR: Development and Evaluation of Self-Powered Piezo-Floating-Gate Sensor Chipsets for Embedded and Implantable Structural Health Monitoring
AIR:用于嵌入式和植入式结构健康监测的自供电压电浮栅传感器芯片组的开发和评估
- 批准号:
1127606 - 财政年份:2011
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
- 批准号:82371192
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
多囊卵巢综合征中甲酰肽受体2调控小胶质细胞代谢重编程导致GnRH神经元过度激活及HPO轴异常的病理机制研究
- 批准号:82370797
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
LINGO-1与WNK3的相互作用在神经元凋亡中的功能研究
- 批准号:81000524
- 批准年份:2010
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
离子通道空间分布的变化在DRG神经元异常自发放电中的作用
- 批准号:30900443
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
突触后致密物95-NMDAR信号复合体在发育中神经元惊厥后高兴奋性中的作用
- 批准号:30870865
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
吸入性全身麻醉药致发育神经元毒性的受体-细胞内钙稳态阶段特异性机制及干预研究
- 批准号:30772086
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
黑质神经元对代谢负荷的应答与离子通道的作用
- 批准号:30370459
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Monocyte-Derived Microglia in Development and after Neonatal Brain Injury
发育中和新生儿脑损伤后的单核细胞衍生的小胶质细胞
- 批准号:
10593385 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Atlas for neuronal and glial cell types selectively vulnerable to proteinopathies during progression of Alzheimer's Disease
在阿尔茨海默病进展过程中选择性易受蛋白质病影响的神经元和神经胶质细胞类型图谱
- 批准号:
10667245 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Study of NEXMIF mosaic expression on neuronal development and connectivity in female mice
NEXMIF 镶嵌表达对雌性小鼠神经元发育和连接的影响研究
- 批准号:
10642436 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Multipopulation voltage imaging for network insights in temporal lobe epilepsy
多人电压成像用于颞叶癫痫的网络洞察
- 批准号:
10823933 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Cellular Mediators of Dentate Pattern Separation in Epilepsy
癫痫齿状模式分离的细胞介质
- 批准号:
10752729 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Neural activity and circuitry-mediated hippocampal stress responses
神经活动和电路介导的海马应激反应
- 批准号:
10903002 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别: