Nonparametric Methodology for Learning from People: Inference, Algorithms, and Optimality

向人学习的非参数方法:推理、算法和最优性

基本信息

  • 批准号:
    2210734
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Learning from people represents a new and exciting paradigm for research in statistics and data science and is useful both in understanding behavioral patterns (for example in marketing) and for informing interventions (for example in education). Data from humans can also be elicited to inform various downstream tasks, with crowdsourcing being routinely used to collect data across applications spanning bioinformatics, epidemiology, computer vision, and environmental modeling. A common characteristic of such data is its scale and noisiness; having flexible and interpretable models for such data is broadly useful in downstream decision-making. The investigators aim to develop and thoroughly study flexible classes of models and methods for drawing inferences from large-scale data collected from people in a variety of such contexts.Specifically, the investigations will focus on developing three key facets of such nonparametric methodology: (a) Computationally efficient, assumption-lean methods to fit expressive models to data; (b) Equipping models to integrate application-specific information in a general-purpose fashion; and (c) Developing models and methods that accommodate dynamically varying data streams. The research formulates a host of theoretical and methodological questions whose solutions would constitute fundamental progress in nonparametric inference, while touching upon practical and timely issues such as fairness in ranking systems. This project will also provide training and research opportunities for the next generation of data scientists by encouraging them to model the entire data analysis pipeline, from data collection to inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
向人学习代表了统计学和数据科学研究的一个令人兴奋的新范式,在理解行为模式(例如在市场营销中)和告知干预措施(例如在教育中)方面都很有用。来自人类的数据也可以为各种下游任务提供信息,众包通常用于收集跨生物信息学、流行病学、计算机视觉和环境建模等应用程序的数据。这类数据的一个共同特点是规模大、噪声大;为这些数据提供灵活且可解释的模型在下游决策中非常有用。研究人员的目标是开发和深入研究灵活的模型和方法,以便从各种此类背景下从人们收集的大规模数据中得出推论。具体地说,调查将集中于发展这种非参数方法的三个关键方面:(a)计算效率高、假设少的方法,使表达模型适合于数据;(b)使模型以通用方式综合具体应用的资料;(c)发展适应动态变化的数据流的模型和方法。该研究提出了一系列理论和方法上的问题,这些问题的解决方案将构成非参数推理的基本进展,同时触及了诸如排名系统公平性等实际和及时的问题。该项目还将为下一代数据科学家提供培训和研究机会,鼓励他们对从数据收集到推理的整个数据分析管道进行建模。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sharp analysis of EM for learning mixtures of pairwise differences
敏锐的 EM 分析,用于学习成对差异的混合
Perceptual adjustment queries and an inverted measurement paradigm for low-rank metric learning
低秩度量学习的感知调整查询和倒置测量范式
Modeling and Correcting Bias in Sequential Evaluation
序贯评估中的建模和纠正偏差
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenshuo Guo;Kumar Krishna Agrawal;Aditya Grover;Vidya Muthukumar;A. Pananjady
  • 通讯作者:
    Wenshuo Guo;Kumar Krishna Agrawal;Aditya Grover;Vidya Muthukumar;A. Pananjady
Optimal and instance-dependent guarantees for Markovian linear stochastic approximation
马尔可夫线性随机逼近的最优且依赖于实例的保证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Pananjady其他文献

On the complexity of making a distinguished vertex minimum or maximum degree by vertex deletion
  • DOI:
    10.1016/j.jda.2015.03.002
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sounaka Mishra;Ashwin Pananjady;N. Safina Devi
  • 通讯作者:
    N. Safina Devi

Ashwin Pananjady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Methodology of Project Based Learning in Mathematics, Information and Period for Inquiry-Based Cross-Disciplinary Study by Design Thinking
数学、信息与时期的项目式学习方法论,以设计思维进行探究式跨学科学习
  • 批准号:
    23K18917
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
  • 批准号:
    23H00464
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Machine learning-based alignment-free methodology for complete genome analysis
基于机器学习的免比对方法,用于完整基因组分析
  • 批准号:
    DGECR-2022-00370
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Launch Supplement
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
  • 批准号:
    RGPIN-2018-05476
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
  • 批准号:
    RGPIN-2020-04331
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonizing String and Unification-based Methodology with Machine Learning for Text Mining and Processing
将基于字符串和统一的方法与用于文本挖掘和处理的机器学习相协调
  • 批准号:
    RGPIN-2019-05683
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning-based alignment-free methodology for complete genome analysis
基于机器学习的免比对方法,用于完整基因组分析
  • 批准号:
    RGPIN-2022-03547
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
  • 批准号:
    RGPIN-2019-05917
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
  • 批准号:
    RGPIN-2019-05917
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Study on a methodology that gives a bird's-eye view of interdisciplinary relationships based on statistics and machine learning
基于统计学和机器学习的跨学科关系鸟瞰方法论研究
  • 批准号:
    21K18309
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了