Low-Dimensional Si-Sn and Si-Ge-Sn Nanoalloys as High-Efficiency, Direct-gap Nanostructures for Visible to Infrared Optoelectronics.

低维 Si-Sn 和 Si-Ge-Sn 纳米合金作为高效、直接带隙纳米结构,用于可见光到红外光电器件。

基本信息

  • 批准号:
    2211606
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Developing high-efficiency light emitters from earth abundant elements is imperative to replace rare and expensive materials currently used in optical and electronic technologies. The prospective low-cost and non-toxic candidates such as silicon, however, show extremely low electricity to light conversion efficiency in their conventional arrangement. This project integrates the unique quantum effects in nanoscale silicon and tin alloying to produce silicon-tin and silicon-germanium-tin nanoparticles with size and composition tunable superior light absorption and emission properties for visible to infrared applications. The research team combines the material synthesis efforts with computational calculations and advanced optical and structural characterizations to garner a comprehensive understanding of the physical and optical properties and stability of nanoscale alloys. The collaborative nature of this research provides multidisciplinary training and mentoring of graduate and undergraduate students, to develop skills in materials design and synthesis, computational chemistry, nanoscience, and advanced optical spectroscopy. The summer outreach to Richmond Public Schools exposes K-12 students to cutting-edge materials research projects and develops age-appropriate materials science curricular modules, impacting hundreds of underrepresented minority students. Technical Description: Group IV semiconductor alloys that show high efficiency direct-gap emission have gained exceptional interest for realizing Si-based optoelectronic technologies. However, the narrow energy gaps and the extremely low solubility of Sn in Si and Ge hindered their fabrication and widespread application in visible to infrared optoelectronic studies. This project exploits the concerted influences of quantum confinement effects, Sn nano-alloying, and solution-phase synthesis to produce metastable Si-Sn and Si-Ge-Sn alloys and quantum dots (QDs) with size and composition tunable direct energy gaps and superior absorption and emission properties across visible to infrared spectrum. A series of monodisperse alloys having various sizes and compositions are produced by innovative colloidal chemistry methods. The influences of Sn alloying and quantum confinement on optical properties are thoroughly and systematically probed via steady-state and time-resolved photoluminescence and pump/probe transient absorption spectroscopy, guided by first-principles electronic structure and thermodynamic stability calculations. Experiments are designed to probe confinement- and composition-induced direct-gaps of silicon, dark vs. bright excitonic states and their dependence on nanocrystal size and composition, and carrier relaxation mechanisms involving QD core, surface, and their hybrid states to optimize the radiative efficiency. These later efforts along with solution processing and high thermal and optical stability of nanocrystal alloys enable the future design of high-efficiency, silicon-based optoelectronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:从地球丰富的元素中开发高效的光发射器对于取代当前在光学和电子技术中使用的稀有且昂贵的材料。然而,前瞻性的低成本和无毒候选者(例如硅)在其常规排列中表现出极低的电力到光转化效率。该项目集成了纳米级硅和锡合金中的独特量子效应,以产生硅锡和硅 - 德国锡锡纳米颗粒,具有尺寸和可调性的较高光吸收和发射特性,可与红外应用可见。研究团队将材料合成工作与计算计算以及先进的光学和结构特征相结合,以全面了解纳米级合金的物理和光学特性以及稳定性。这项研究的协作性质提供了研究生和本科生的多学科培训和指导,以发展材料设计和合成,计算化学,纳米科学和先进的光学光谱方面的技能。夏季向里士满公立学校的宣传使K-12学生接触了尖端的材料研究项目,并开发了适合年龄的材料科学课程模块,影响了数百名代表性不足的少数族裔学生。技术描述:IV组半导体合金表现出高效率直接隙排放已引起实现基于SI的光电技术的极大兴趣。但是,SN和GE中SN的狭窄能量差距和极低的溶解度阻碍了其在红外光电研究中可见的广泛应用。该项目利用了量子限制效应,SN纳米合金和溶液相合成的一致影响,以产生可稳定的SI-SN和SI-GE-SN合金和量子点(QDS),具有可调的直接能量隙,较高的吸收和出色的吸收和发射性能,以及可见的基础范围内的跨越基础。创新的胶体化学方法产生了一系列具有各种尺寸和组成的单分散合金。通过稳态和时间分辨的光致发光以及泵/探针瞬态吸收光谱,通过第一原则电子结构和热力学稳定性计算引导,通过稳态和时间分辨的光致发光以及泵/探针瞬态吸收光谱对光学特性的影响进行了彻底和系统的探测。实验旨在探测硅,深色与明亮的激子状态的限制和组成诱导的直接间隙及其对纳米晶体大小和组成的依赖,以及涉及QD核心,表面及其混合状态的载体弛豫机制,以优化放射性效率。这些后来的努力以及纳米晶体合金的溶液处理以及高热和光学稳定性,可以使未来的高效设计设计,基于硅的光电子。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识绩效和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Indika Arachchige其他文献

Indika Arachchige的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Indika Arachchige', 18)}}的其他基金

CAS: Bimetallic Transition Metal Phosphide Nanostructures as High-Efficiency, Earth-Abundant, and Durable Catalysts for Electrochemical Water Splitting
CAS:双金属过渡金属磷化物纳米结构作为高效、地球丰富且耐用的电化学水分解催化剂
  • 批准号:
    2154747
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
REU Site: Practices and Perspectives in Nanoscience and Chemical Biology
REU 网站:纳米科学和化学生物学的实践和观点
  • 批准号:
    1851916
  • 财政年份:
    2019
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
SusChEM: Synthesis and Structure-Property Elucidation of Direct-Bandgap Group IV Alloy Nanocrystals for Optoelectronic Applications
SusChEM:用于光电应用的直接带隙 IV 族合金纳米晶体的合成和结构性能阐明
  • 批准号:
    1506595
  • 财政年份:
    2015
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似国自然基金

3D打印-燃烧合成制备复杂构型多孔Si3N4陶瓷及其尺寸稳定化机制
  • 批准号:
    52302069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
直立SiO2/Si芯壳双曲结构纳米硅可控制备及应变调控研究
  • 批准号:
    61874144
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
微米尺寸Si/TiO2-x多级结构的构筑及储锂机制研究
  • 批准号:
    21805238
  • 批准年份:
    2018
  • 资助金额:
    27.3 万元
  • 项目类别:
    青年科学基金项目
超高温Nb-Si基合金中固溶体NbSS相由解理向韧窝型断裂转变的机理研究
  • 批准号:
    51771006
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
铝电解槽用新型TiB2-MoSi2复合阴极材料的低成本、净尺寸制备、组织与性能
  • 批准号:
    51602041
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Growth processes and low-dimensional physical properties on ultrathin high-k materials film fabricated on concave-convex Si surface by spectroscopic observation
光谱观察凹凸硅表面超薄高k材料薄膜的生长过程及低维物理性质
  • 批准号:
    17K06030
  • 财政年份:
    2017
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring of low-dimensional honeycomb sheet of 14th group elements (Si, Ge)
第14族元素(Si、Ge)低维蜂窝片的探索
  • 批准号:
    24241040
  • 财政年份:
    2012
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fabrication of high efficiency solar cell materials using low dimensional Si nanostructures
使用低维硅纳米结构制造高效太阳能电池材料
  • 批准号:
    21760015
  • 财政年份:
    2009
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Control of structure and property in new low dimensional structures on Si nanomembrane
硅纳米膜上新型低维结构的结构和性能控制
  • 批准号:
    19206005
  • 财政年份:
    2007
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Five-dimensional alloy growth of AlInGaNAs and fundamental investigation for realizing Opto-Electronic Integurated Circuits
AlInGaNAs五维合金生长及实现光电集成电路的基础研究
  • 批准号:
    15560284
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了