Distribution of Roots of Random Functions

随机函数的根的分布

基本信息

  • 批准号:
    2211929
  • 负责人:
  • 金额:
    $ 17.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Random polynomials occur naturally in various areas of physics and mathematics, such as in quantum chaotic systems and approximation theory. The study of random polynomials has applications in computer science and engineering. In addition, studying roots of high-degree polynomials is an important area of mathematics that is useful in both pure and applied sciences. The goal of this research project is to study fundamental questions concerning the distribution of roots of random polynomials and, more generally, random functions. This project contains three research programs that address questions in the field of random functions. In the first program, the investigator plans to establish local universality for random orthogonal polynomials and derive the mean number of real roots for general distributions. The second program aims to study the variance and the Central Limit Theorem for the number of real roots of various classical models of random functions. The goal of the third program is to further the understanding of the connection between the growth of the coefficients and the growth of the number of real roots. To approach these questions, the investigator will develop the local universality method and build on different tools in analysis and probability. The project will also address several questions regarding the mixing time of Markov Chains and the phase transition of the contact process, an important model for the spread of diseases in communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机多项式自然而然地出现在物理和数学的各个领域,如量子混沌系统和逼近理论。随机多项式的研究在计算机科学和工程中有着广泛的应用。此外,研究高次多项式的根是一个重要的数学领域,在理论科学和应用科学中都很有用。这个研究项目的目的是研究关于随机多项式的根的分布的基本问题,更广泛地说,随机函数的根的分布。这个项目包含三个研究项目,解决随机函数领域的问题。在第一个程序中,研究者计划建立随机正交多项式的局部普适性,并推导出一般分布的实根的平均个数。第二个程序旨在研究各种经典随机函数模型的实根个数的方差和中心极限定理。第三个程序的目标是进一步了解系数的增长和实根数的增长之间的联系。为了解决这些问题,研究人员将发展局部普适性方法,并在分析和概率方面建立不同的工具。该项目还将解决有关马尔可夫链的混合时间和接触过程的相变的几个问题,这是疾病在社区中传播的重要模型。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oanh Nguyen其他文献

Random orthonormal polynomials: local universality and expected number of real roots
随机正交多项式:局部普适性和预期实根数
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen Q. Do;Oanh Nguyen;V. Vu
  • 通讯作者:
    V. Vu
Meaningful Change in Patient-Reported Outcomes after CAR T-Cell Therapy for Relapsed/Refractory Multiple Myeloma in Standard of Care: Differences By Race and Ethnicity
  • DOI:
    10.1182/blood-2024-208529
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Carina E. Ferraris;Xiaoyin Li;Gabriel De Avila;Lisa M. Gudenkauf;Aasha I. Hoogland;Oanh Nguyen;Yvelise Rodriguez;Sylvia L. Crowder;Nathan Parker;Tiffany L. Carson;Rachid C. Baz;Kenneth H. Shain;Brandon Blue;Ariel Grajales-Cruz;Melissa Alsina;Ciara Louise Freeman;Omar Castaneda;Taiga Nishihori;Hien Liu;Frederick L. Locke
  • 通讯作者:
    Frederick L. Locke
The sex-specific effect of dioxin exposure on the growth of children: A Vietnamese cohort study
二恶英暴露对儿童生长的性别特异性影响:越南队列研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oanh Nguyen;T. Kido;ティ フオン オアン ニュエン;城戸 照彦
  • 通讯作者:
    城戸 照彦
On the spectrum of random walks on complete finite $d$-ary trees
完全有限 $d$ 树上的随机游走谱
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Nestoridi;Oanh Nguyen
  • 通讯作者:
    Oanh Nguyen
Roots of random functions
随机函数的根
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oanh Nguyen;V. Vu
  • 通讯作者:
    V. Vu

Oanh Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oanh Nguyen', 18)}}的其他基金

Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
  • 批准号:
    2246575
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
  • 批准号:
    2125031
  • 财政年份:
    2021
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
  • 批准号:
    1954174
  • 财政年份:
    2020
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant

相似海外基金

Tracing the African roots of Sri-Lanka Portuguese
追溯斯里兰卡葡萄牙语的非洲根源
  • 批准号:
    AH/Z505717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Research Grant
REGULATING THE FLOW: Uncovering How Roots Sense and Respond to Water Availability
调节流量:揭示根部如何感知和响应水的可用性
  • 批准号:
    BB/Z514482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Fellowship
I-Corps: X-Roots X-ray Computed Tomography Scans of Belowground Root Systems
I-Corps:X-Roots 地下根系的 X 射线计算机断层扫描
  • 批准号:
    2344852
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
LED for faster and better propagation (LED4FaB Roots)
LED 实现更快、更好的传播(LED4FaB Roots)
  • 批准号:
    BB/Z514378/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Research Grant
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
  • 批准号:
    FT230100595
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    ARC Future Fellowships
IRES Track 1: International Research Experiences for Students: Phase II: Into the Magmatic Roots: Interactions Between Magmatism, Tectonics, and Sedimentation
IRES 轨道 1:学生国际研究经验:第二阶段:深入岩浆根源:岩浆作用、构造和沉积之间的相互作用
  • 批准号:
    2245854
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Molecular mechanisms of nutritropism of rice roots
水稻根系营养性的分子机制
  • 批准号:
    22KF0086
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
cliniCIN: Targeting the roots of chromosomal instability in cancer
cliniCIN:针对癌症染色体不稳定的根源
  • 批准号:
    EP/X028054/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Research Grant
The evolution of nerves: understanding the roots of neurodegeneration
神经的进化:了解神经退行性变的根源
  • 批准号:
    2894949
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Studentship
Global Grass-roots Movements of Persons with Psychosocial Disabilities in Africa
非洲社会心理残疾人的全球草根运动
  • 批准号:
    22KJ2765
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了