Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
基本信息
- 批准号:2246575
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The analysis of roots of polynomials with random coefficients is a growing area with applications in subfields across mathematics, including approximation theory, mathematical physics, and ordinary differential equations. This project will investigate various features of the distribution of the number of roots. Another focus of this project is the contact process on random networks, aiming to understand the dynamics of contagion as it spreads through complex interconnected systems. This work will provide insight into real-world epidemics and information dissemination, leading to the development of more effective strategies for controlling and preventing the spread of infections or ideas. This research project seeks to deepen our understanding of these ubiquitous random structures and to explore their applications in real-world problems. Graduate and undergraduate students will be mentored as part of this project, and the research findings will be disseminated through publications and research talks, reaching a wide audience.More specifically, this research project will investigate the universality of variances and higher moments of the number of real roots, along with the asymptotic distribution of this number. To achieve this, various universality techniques will be used to develop new tools and connections. Regarding the contact process, the project specifically focuses on the susceptible-infected-susceptible (SIS) model and will explore the phase transition of the survival time. Novel ideas and methods will be pursued to rigorously analyze the SIS contact process. Through these projects, new connections between different areas are anticipated to emerge, leading to fresh insights and applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有随机系数的多项式的根的分析是一个正在发展的领域,在数学的各个子领域都有应用,包括逼近理论、数学物理和常微分方程式。本项目将调查根数分布的各种特征。这个项目的另一个重点是随机网络上的接触过程,旨在了解传染病在复杂的相互关联的系统中传播的动力学。这项工作将提供对现实世界流行病和信息传播的洞察,导致制定更有效的战略来控制和预防感染或思想的传播。这一研究项目旨在加深我们对这些普遍存在的随机结构的理解,并探索它们在现实世界问题中的应用。作为这个项目的一部分,研究生和本科生将接受指导,研究成果将通过出版物和研究讲座传播,面向广泛的受众。更具体地说,这个研究项目将调查实际根数的方差和高阶矩的普遍性,以及这个数字的渐近分布。为了实现这一点,将使用各种通用技术来开发新的工具和连接。在接触过程方面,该项目特别关注易感-感染-易感(SIS)模型,并将探索生存时间的相变。将寻求新的想法和方法来严格分析SIS联系过程。通过这些项目,不同领域之间的新联系有望出现,带来新的见解和应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oanh Nguyen其他文献
Random orthonormal polynomials: local universality and expected number of real roots
随机正交多项式:局部普适性和预期实根数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;Oanh Nguyen;V. Vu - 通讯作者:
V. Vu
Meaningful Change in Patient-Reported Outcomes after CAR T-Cell Therapy for Relapsed/Refractory Multiple Myeloma in Standard of Care: Differences By Race and Ethnicity
- DOI:
10.1182/blood-2024-208529 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Carina E. Ferraris;Xiaoyin Li;Gabriel De Avila;Lisa M. Gudenkauf;Aasha I. Hoogland;Oanh Nguyen;Yvelise Rodriguez;Sylvia L. Crowder;Nathan Parker;Tiffany L. Carson;Rachid C. Baz;Kenneth H. Shain;Brandon Blue;Ariel Grajales-Cruz;Melissa Alsina;Ciara Louise Freeman;Omar Castaneda;Taiga Nishihori;Hien Liu;Frederick L. Locke - 通讯作者:
Frederick L. Locke
The sex-specific effect of dioxin exposure on the growth of children: A Vietnamese cohort study
二恶英暴露对儿童生长的性别特异性影响:越南队列研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Oanh Nguyen;T. Kido;ティ フオン オアン ニュエン;城戸 照彦 - 通讯作者:
城戸 照彦
On the spectrum of random walks on complete finite $d$-ary trees
完全有限 $d$ 树上的随机游走谱
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Nestoridi;Oanh Nguyen - 通讯作者:
Oanh Nguyen
Oanh Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oanh Nguyen', 18)}}的其他基金
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2211929 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2125031 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
1954174 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical analysis of submodular set functions and its application to stochastic ranking model
子模集合函数的数学分析及其在随机排序模型中的应用
- 批准号:
22K03358 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical analysis and density functions path-dependent/non-colliding stochastic differential equations with non-bounded coefficients
数值分析和密度函数路径相关/非碰撞随机微分方程与无界系数
- 批准号:
19K14552 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approximation of Functions with Parameter-Dependent or Stochastic Shock Locations Arising from Hyperbolic Partial Differential Equations
由双曲偏微分方程产生的参数相关或随机冲击位置的函数逼近
- 批准号:
1912703 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Approximation of Functions with Parameter-Dependent or Stochastic Shock Locations Arising from Hyperbolic Partial Differential Equations
由双曲偏微分方程产生的参数相关或随机冲击位置的函数逼近
- 批准号:
1720377 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Pricing and forecasting of sovereign CDS premium with stochastic risk-free rate and default intensity
具有随机无风险利率和违约强度的主权 CDS 溢价的定价和预测
- 批准号:
18K01707 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of density functions and sensitivities concerning stochastic differential equations
随机微分方程的密度函数和灵敏度分析
- 批准号:
17K14209 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CRCNS: Bayesian inference in spiking sensory neurons
CRCNS:尖峰感觉神经元的贝叶斯推理
- 批准号:
8837236 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Modulating Stochastic Gene Expression for Cell-fate Control and Therapeutics
调节随机基因表达以控制细胞命运和治疗
- 批准号:
10211509 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Modulating Stochastic Gene Expression for Cell-fate Control and Therapeutics
调节随机基因表达以控制细胞命运和治疗
- 批准号:
10581483 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Modulating Stochastic Gene Expression for Cell-fate Control and Therapeutics
调节随机基因表达以控制细胞命运和治疗
- 批准号:
10362710 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别: