Unified Vision-Based Motion Estimation and Control for Multiple and Complex Robots

多个复杂机器人的基于视觉的统一运动估计和控制

基本信息

  • 批准号:
    2212051
  • 负责人:
  • 金额:
    $ 45.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The project enables teams of robots to collaborate on physical tasks, such as assembling a building from prefabricated components under the direction of a human worker. In such settings, each robot might be equipped with cameras to orient itself and have some limitations on how it can move. To achieve the robotic team’s goals, each robot needs to know its location, where to find the prefabricated components, and where the final building should be placed. In addition, the robots need to coordinate with each other on how they move to transport and assemble the components, and to inspect the results of their work. This project develops novel mathematical and engineering methods that would enable the robotic teams to work collaboratively to achieve their goals. The developed methods will be generalizable making them applicable to many different situations and obtaining better results than what is possible with existing approaches. To facilitate a broader impact of this work, the research team will develop an easy-to-use software that facilitates the application of the research to different and new problems. The research team will also collaborate with engineers from Autodesk Inc. to ensure that the developed solution can benefit existing professional design and visualization tools currently used in industry.The robot tasks lay out above imply non-trivial vision-kinodynamic constraints (e.g., rotations, perspective projections) deriving from the intrinsic geometric properties of how the robots move and sense. This project introduces a novel parametrization of the problem, called Shape-of-Motion, that can flexibly incorporate different combinations of vision-kinodynamic constraints (such as close-kinematic-chain, feature matching across multiple images, projection, and field-of-view constraints) as linear constraints on a low-rank matrix. An associated optimization solver, based on the Alternating Direction Method of Multipliers, will find solutions in an elegant and unified manner by iterating between low-rank projections and least-squares steps; different application-specific requirements will then be simply incorporated in the solver as linear constraints. The main intellectual merit of the developed technique is in its versatility and ability to holistically tackle complex problems that are traditionally solved using stacks of separate algorithms (e.g., matching features across images, followed by a 3-D reconstruction of the scene and localization of the robots, followed by planning in the reconstructed map under kinematic constraints).This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目使机器人团队能够在物理任务上进行协作,例如在人类工人的指导下用预制构件组装建筑物。在这样的环境中,每个机器人可能都配备了摄像头来定位自己,并且对它的移动方式有一些限制。 为了实现机器人团队的目标,每个机器人都需要知道自己的位置,哪里可以找到预制构件,以及最终的建筑应该放在哪里。此外,机器人还需要相互协调,以确定它们如何移动来运输和组装组件,并检查它们的工作结果。该项目开发了新的数学和工程方法,使机器人团队能够协同工作,以实现他们的目标。所开发的方法将是可推广的,使它们适用于许多不同的情况,并获得比现有方法更好的结果。为了促进这项工作产生更广泛的影响,研究小组将开发一个易于使用的软件,以促进将研究应用于不同的和新的问题。研究团队还将与Autodesk Inc.的工程师合作。以确保所开发的解决方案可以使当前工业中使用的现有专业设计和可视化工具受益。上面列出的机器人任务意味着非平凡的视觉-Kinodynamic约束(例如,旋转、透视投影),其源自机器人如何移动和感知的固有几何特性。该项目引入了一种新的参数化问题,称为运动形状,可以灵活地将视觉Kinodynamic约束(如闭合运动链,多个图像之间的特征匹配,投影和视场约束)的不同组合作为低秩矩阵上的线性约束。相关的优化求解器,基于交替方向乘法,将通过在低秩投影和最小二乘步骤之间进行迭代,以优雅和统一的方式找到解决方案;然后将不同的应用特定要求简单地作为线性约束纳入求解器中。所开发的技术的主要智力优点在于其多功能性和全面解决传统上使用单独算法堆栈解决的复杂问题的能力(例如,匹配图像中的特征,然后是场景的三维重建和机器人的定位,然后是在运动学约束下在重建的地图中进行规划)。该项目得到机器人技术跨部门基础研究计划的支持,由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roberto Tron其他文献

Sample-Based Output-Feedback Navigation with Bearing Measurements
基于样本的输出反馈导航和方位测量
  • DOI:
    10.48550/arxiv.2203.04416
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahroo Bahreinian;M. Mitjans;Roy Xing;Roberto Tron
  • 通讯作者:
    Roberto Tron
Distributed K-Clustering with Exponential Convergence
具有指数收敛性的分布式 K 聚类
Multi-class Temporal Logic Neural Networks
多类时态逻辑神经网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danyang Li;Roberto Tron
  • 通讯作者:
    Roberto Tron
An Optimization Approach to Bearing-Only Navigation with Applications to a 2-D Unicycle Model
仅方位导航的优化方法及其在二维独轮车模型中的应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roberto Tron;Kostas Daniilidis
  • 通讯作者:
    Kostas Daniilidis
Masquerade Attack Detection Through Observation Planning for Multi-Robot Systems
通过多机器人系统的观察规划检测伪装攻击

Roberto Tron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roberto Tron', 18)}}的其他基金

CPS: Medium: Collaborative Research: Multiagent Physical Cognition and Control Synthesis Against Cyber Attacks
CPS:媒介:协作研究:针对网络攻击的多智能体物理认知和控制综合
  • 批准号:
    1932162
  • 财政年份:
    2019
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Robust, Scalable, Distributed Semantic Mapping for Search-and-Rescue and Manufacturing Co-Robots
NRI:INT:COLLAB:用于搜索救援和制造协作机器人的稳健、可扩展、分布式语义映射
  • 批准号:
    1734454
  • 财政年份:
    2017
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Standard Grant
Control of Micro Aerial Vehicles under Aerodynamic and Physical Contact Interactions
气动和物理接触相互作用下微型飞行器的控制
  • 批准号:
    1728277
  • 财政年份:
    2017
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Standard Grant
III: Small: Distributed Semantic Information Processing Applied to Camera Sensor Networks
III:小:分布式语义信息处理应用于相机传感器网络
  • 批准号:
    1717656
  • 财政年份:
    2017
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Continuing Grant

相似国自然基金

老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
  • 批准号:
    24K21116
  • 财政年份:
    2024
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Continuing Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
  • 批准号:
    23KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Evolutionary study of primate olfaction, taste and color-vision sensor genes by targeted capture and cell-culture-based functional assay
通过靶向捕获和基于细胞培养的功能测定对灵长类动物嗅觉、味觉和色觉传感器基因的进化研究
  • 批准号:
    23H02561
  • 财政年份:
    2023
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high-speed random access vision principle based on mirror array
基于镜面阵列的高速随机存取视觉原理研制
  • 批准号:
    23K18473
  • 财政年份:
    2023
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
  • 批准号:
    23H01487
  • 财政年份:
    2023
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
  • 批准号:
    2331763
  • 财政年份:
    2023
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Standard Grant
Vision-based pain detection in masked faces
基于视觉的蒙面面部疼痛检测
  • 批准号:
    572495-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45.71万
  • 项目类别:
    University Undergraduate Student Research Awards
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
  • 批准号:
    RGPIN-2017-05638
  • 财政年份:
    2022
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Discovery Grants Program - Individual
Developing an Innovative Platform for Modeling Active Road User Interactions and Safety: Integration of Computer Vision, Agent-based, and Machine Learning Models
开发用于对主动道路用户交互和安全进行建模的创新平台:计算机视觉、基于代理和机器学习模型的集成
  • 批准号:
    RGPIN-2019-06688
  • 财政年份:
    2022
  • 资助金额:
    $ 45.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了