PFI-TT: Artificial Intelligence-enabled Real-time System for Early Epileptic Seizure Detection and Prediction
PFI-TT:用于早期癫痫发作检测和预测的人工智能实时系统
基本信息
- 批准号:2213951
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project will be in the area of seizure prediction for patients suffering from drug-resistant epilepsy. The technology developed can have impact on more than 3.4 million Americans that suffer from epilepsy – including 1 million who suffer from drug-resistant epilepsy. Current infrastructure available to the epileptic population is inadequate and is mostly reactive i.e., support is provided after a seizure attack. Physical injury, social ostracization (emotional injury), or limited opportunities (economic injury) result from the inadequate ability to predict siezures. The proposed Artificial Intelligence (AI)-based models will be incorporated into wearable sensors that detect abnormalities in brain electrical activity. The technology will be incorporated into devices like smart phones, and will be non-invasive, and low-cost. Siezure prediction can enable timely human mitigation measures thus providing value by reducing emergency room costs, improving quality of life, and allowing caregivers to provide precautionary measures such as anti-seizure medications. With recent advances in seizure rescue therapeutics, the proposed early prediction technology can help patients make better decisions on when to medicate to prevent a seizure. The proposed project will design and develop advanced machine learning algorithms to identify neuromarkers that can be used for the prediction of epileptic seizures using data from wearable electroencephalography (EEG). The goal of this project is to provide computational infrastructure that can predict seizures with high sensitivity and low false positive rates, and can provide real-time continuous monitoring making it highly impactful for patients and caregivers. These solutions will be developed by formulating deep-learning models that will combine residual and long-short term memory(LSTM) layers for feature extraction for improved sensitivity and specificity for class imbalances. This development will be followed by prediction using fully connected layers. To ensure generalizability, the models will be trained and tested using data from various EEG data acquisition sites and techniques. The edge/federated computing infrastructure will be formulated to alert patients and caregivers to take preventative measures about an impending seizure resulting in better outcomes for the patients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该创新-技术转化伙伴关系(PFI-TT)项目的更广泛影响/商业潜力将在耐药性癫痫患者的癫痫发作预测领域。 这项技术可以对340多万患有癫痫的美国人产生影响,其中包括100万患有耐药性癫痫的人。癫痫人群现有的基础设施不足,而且大多是被动的,即,在癫痫发作后提供支助。 身体伤害,社会排斥(情感伤害),或有限的机会(经济伤害)的结果,从能力不足,以预测siezures。拟议中的基于人工智能(AI)的模型将被纳入可穿戴传感器中,以检测脑电活动的异常。该技术将被整合到智能手机等设备中,并且将是非侵入性的,低成本的。Siezure预测可以及时采取人类缓解措施,从而通过降低急诊室成本,提高生活质量,并允许护理人员提供预防措施(如抗癫痫药物)来提供价值。随着癫痫抢救疗法的最新进展,提出的早期预测技术可以帮助患者更好地决定何时进行预防癫痫发作。拟议的项目将设计和开发先进的机器学习算法,以识别可用于使用可穿戴脑电图(EEG)数据预测癫痫发作的神经标志物。该项目的目标是提供计算基础设施,可以高灵敏度和低假阳性率预测癫痫发作,并可以提供实时连续监测,使其对患者和护理人员具有高度影响力。这些解决方案将通过制定深度学习模型来开发,该模型将结合联合收割机残差和长短期记忆(LSTM)层进行特征提取,以提高类别不平衡的灵敏度和特异性。这一发展之后将使用全连接层进行预测。为了确保通用性,将使用来自各种EEG数据采集站点和技术的数据对模型进行训练和测试。边缘/联合计算基础设施将被制定为提醒患者和护理人员采取预防措施,以预防即将发生的癫痫发作,从而为患者带来更好的结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPERTL: Epileptic Seizure Prediction using EEG with ResNets and Transfer Learning
- DOI:10.1109/bhi56158.2022.9926767
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Umair Mohammad;Fahad Saeed
- 通讯作者:Umair Mohammad;Fahad Saeed
Classification of Autism Spectrum Disorder Using rs-fMRI data and Graph Convolutional Networks
- DOI:10.1109/bigdata55660.2022.10021070
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Tianren Yang;Mai A. Al-Duailij;S. Bozdag;Fahad Saeed
- 通讯作者:Tianren Yang;Mai A. Al-Duailij;S. Bozdag;Fahad Saeed
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fahad Saeed其他文献
Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain
- DOI:
10.1007/s00704-015-1463-5 - 发表时间:
2015-04-22 - 期刊:
- 影响因子:2.700
- 作者:
Mansour Almazroui;Md. Nazrul Islam;A. K. Al-Khalaf;Fahad Saeed - 通讯作者:
Fahad Saeed
The Dialysis De Facto Default Is Not for Everyone: The Palliative Care Clinician's Role for Older Patients with Kidney Failure and Comorbidities (TH137)
- DOI:
10.1016/j.jpainsymman.2022.02.220 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Alvin Moss;Dale Lupu;Fahad Saeed;Christine Corbett - 通讯作者:
Christine Corbett
Establishing Research Priorities in Geriatric Nephrology: A Delphi Study of Clinicians and Researchers
老年肾脏病学研究重点的确立:一项针对临床医生和研究人员的德尔菲研究
- DOI:
10.1053/j.ajkd.2024.09.012 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:8.200
- 作者:
Catherine R. Butler;Akanksha Nalatwad;Katharine L. Cheung;Mary F. Hannan;Melissa D. Hladek;Emily A. Johnston;Laura Kimberly;Christine K. Liu;Devika Nair;Semra Ozdemir;Fahad Saeed;Jennifer S. Scherer;Dorry L. Segev;Anoop Sheshadri;Karthik K. Tennankore;Tiffany R. Washington;Dawn Wolfgram;Nidhi Ghildayal;Rasheeda Hall;Mara McAdams-DeMarco - 通讯作者:
Mara McAdams-DeMarco
International Politics — Effects on the Training of International Medical Graduates
- DOI:
10.1007/bf03341760 - 发表时间:
2014-01-17 - 期刊:
- 影响因子:1.800
- 作者:
Fahad Saeed;Nadia Kousar;Jean L. Holley - 通讯作者:
Jean L. Holley
Correction to: Hydrologic interpretation of machine learning models for 10-daily streamflow simulation in climate sensitive upper Indus catchments
- DOI:
10.1007/s00704-024-05121-3 - 发表时间:
2024-08-07 - 期刊:
- 影响因子:2.700
- 作者:
Haris Mushtaq;Taimoor Akhtar;Muhammad Zia ur Rahman Hashmi;Amjad Masood;Fahad Saeed - 通讯作者:
Fahad Saeed
Fahad Saeed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fahad Saeed', 18)}}的其他基金
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
I-Corps: Utilizing Machine learning and Artificial Intelligence (AI) for Early Detection and Identification of Mental Disorders
I-Corps:利用机器学习和人工智能 (AI) 早期检测和识别精神障碍
- 批准号:
2143515 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: SHF: HPC Solutions to Big NGS Data Compression
CRII:SHF:NGS 大数据压缩的 HPC 解决方案
- 批准号:
1855441 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
- 批准号:
1925960 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
- 批准号:
1651724 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: SHF: HPC Solutions to Big NGS Data Compression
CRII:SHF:NGS 大数据压缩的 HPC 解决方案
- 批准号:
1464268 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
叶绿体蛋白 TT3.2 调控水稻耐热性的分子机制研究
- 批准号:24ZR1431200
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
- 批准号:82304596
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
- 批准号:32301745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Glypian3-TT3oB新型聚集诱导发光复合体的NIR-IIb靶向成像及cGAS-STING通路激活在肝癌精准标记并增敏免疫治疗中的研究
- 批准号:LQ23H160042
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
HIIT 对TT+DR 小鼠肩袖肌脂肪浸润的治疗效果和机制研究
- 批准号:2021JJ40949
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
GhmiR858靶向TT2协同调控彩色棉纤维色泽形成的分子机制研究
- 批准号:32001591
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
苯并呋喃类化合物TT01通过抑制TGF-β/ TGFβR-ECD复合物蛋白相互作用治疗特发性肺纤维化的药理学及机制研究
- 批准号:81973383
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2329858 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2409577 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
PFI-TT: Trustworthy Artificial Intelligence for the Volumetric Evaluation of Brain Tumors
PFI-TT:用于脑肿瘤体积评估的值得信赖的人工智能
- 批准号:
2234468 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Development of artificial substrates for growth of human stem cells suitable for clinical applications
PFI-TT:开发适合临床应用的人类干细胞生长人工基质
- 批准号:
2234541 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Using artificial intelligence to improve the accuracy of automated pavement condition data collection
PFI-TT:利用人工智能提高自动路面状况数据收集的准确性
- 批准号:
2213694 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Novel Artificial Intelligence Approach for Automatic Identification of Genetic and Neuroimaging Markers of Autism Spectrum Disorder
PFI-TT:自动识别自闭症谱系障碍遗传和神经影像标记的新型人工智能方法
- 批准号:
2213985 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: An artificial intelligence system for prediction of wind hazards in civil engineering applications
PFI-TT:用于预测土木工程应用中的风灾的人工智能系统
- 批准号:
2140723 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Artificial Intelligence System for Enterprise Performance Management that Integrates Causal Analytics and Human Expertise
PFI-TT:集成因果分析和人类专业知识的企业绩效管理人工智能系统
- 批准号:
2141124 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Using Artificial Intelligence (AI) and Natural Language Processing (NLP) to Enhance Writing for Publication
PFI-TT:使用人工智能 (AI) 和自然语言处理 (NLP) 增强出版写作
- 批准号:
2044642 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Virtual Physical Therapy Using Mobile Devices and Artificial Intelligence
PFI-TT:使用移动设备和人工智能的虚拟物理治疗
- 批准号:
2044759 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant