PFI-TT: Novel Artificial Intelligence Approach for Automatic Identification of Genetic and Neuroimaging Markers of Autism Spectrum Disorder

PFI-TT:自动识别自闭症谱系障碍遗传和神经影像标记的新型人工智能方法

基本信息

项目摘要

The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project is to reduce the age of patients diagnosed with autism spectrum disorders (ASD) to approximately six months and produce a detailed picture of where an individual falls on the autism spectrum. These aims will be accomplished via an Artificial Intelligence (AI)-enabled software framework that will analyze brain structure and other medical information from children at risk for ASD. The system may reduce the burden of obtaining a diagnosis of autism, which takes a significant amount of time and thousands of dollars under current clinical practice. The detailed mapping of ASD symptoms to brain regions may help pediatricians and other specialists better communicate their diagnostic findings and inform their plans for treatment. Furthermore, reduction in age at which autism can be diagnosed will give parents and caregivers a greater window of time to apply early intensive behavioral interventions which are known to improve outcomes in autistic children.The proposed project aims to produce a computer-assisted diagnostic (CAD) system for autism diagnosis based on objective metrics derived from multimodal brain imaging and genomic risk factors. Pediatric autism diagnosis currently relies on subjective evaluations of child behavior. A diagnostic process can begin as early as one or two years of age, but it continues with follow-up observations through age 3–4 years till a final autism diagnosis is rendered. This process can cost $5000–$7000 in total. The proposed CAD system is anticipated to produce a rapid diagnosis at a fraction of current cost. It seeks to identify specific facets of brain anatomy (from structural magnetic resonance imaging [MRI]), and brain connectivity (from functional and diffusion MRI) that will correlate with specific behavioral subtypes of ASD. Evaluating these neurological data in concert with ASD-related variations in the patient’s genome, will produce a detailed profile of brain regions and neural circuit maps implicated in ASD symptomatology. This map will be accomplished using deep machine learning to train the system on a retrospective cohort of high-risk infants, who underwent brain imaging prior to one year of age and were later diagnosed with autism. The system will be validated against an independent dataset.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一创新-技术转化伙伴关系(PFI-TT)项目的更广泛影响/商业潜力是将被诊断患有自闭症谱系障碍(ASD)的患者的年龄降低到大约六个月,并详细了解个体福尔斯属于自闭症谱系。这些目标将通过一个支持人工智能(AI)的软件框架来实现,该框架将分析ASD风险儿童的大脑结构和其他医疗信息。该系统可以减轻获得自闭症诊断的负担,在目前的临床实践中,这需要大量的时间和数千美元。ASD症状到大脑区域的详细映射可以帮助儿科医生和其他专家更好地传达他们的诊断结果,并告知他们的治疗计划。此外,降低自闭症的诊断年龄将为父母和照顾者提供更大的时间窗口,以应用早期强化行为干预,这是已知的,以改善自闭症儿童的结果。拟议的项目旨在生产一个计算机辅助诊断(CAD)系统,用于自闭症诊断的基础上,从多模态脑成像和基因组风险因素的客观指标。儿童自闭症的诊断目前依赖于对儿童行为的主观评价。诊断过程可以开始早在一岁或两岁,但它继续通过3-4岁的随访观察,直到最终的自闭症诊断。 这个过程总共需要花费5000 - 7000美元。拟议的CAD系统预计将产生一个快速的诊断,目前的成本的一小部分。它旨在识别大脑解剖学的特定方面(来自结构磁共振成像[MRI]),以及与ASD的特定行为亚型相关的大脑连接性(来自功能和扩散MRI)。结合患者基因组中与ASD相关的变异来评估这些神经学数据,将产生ASD神经病学中涉及的大脑区域和神经回路图的详细概况。该地图将使用深度机器学习来完成,以在一个回顾性的高危婴儿队列中训练系统,这些婴儿在一岁之前接受了大脑成像,后来被诊断患有自闭症。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ayman El-Baz其他文献

Improving full-cardiac cycle strain estimation from tagged CMR by accurate modeling of 3D image appearance characteristics
  • DOI:
    10.1016/j.ejrnm.2015.10.014
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matt Nitzken;Garth M. Beache;Marwa Ismail;Georgy Gimel’farb;Ayman El-Baz
  • 通讯作者:
    Ayman El-Baz
A volumetric 3D model of the human jaw
  • DOI:
    10.1016/j.ics.2005.03.345
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hossam Hassan;Ayman El-Baz;Aly A. Farag;Allan G. Farman;D. Tasman;William M. Miller
  • 通讯作者:
    William M. Miller
Event-related Potential Study of Novelty Processing Abnormalities in Autism
  • DOI:
    10.1007/s10484-009-9074-5
  • 发表时间:
    2009-02-06
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Estate Sokhadze;Joshua Baruth;Allan Tasman;Lonnie Sears;Grace Mathai;Ayman El-Baz;Manuel F. Casanova
  • 通讯作者:
    Manuel F. Casanova
Effects of Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Gamma Frequency Oscillations and Event-Related Potentials During Processing of Illusory Figures in Autism
  • DOI:
    10.1007/s10803-008-0662-7
  • 发表时间:
    2008-11-22
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Estate M. Sokhadze;Ayman El-Baz;Joshua Baruth;Grace Mathai;Lonnie Sears;Manuel F. Casanova
  • 通讯作者:
    Manuel F. Casanova
Multi-branch CNNFormer: a novel framework for predicting prostate cancer response to hormonal therapy
  • DOI:
    10.1186/s12938-024-01325-w
  • 发表时间:
    2024-12-23
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Ibrahim Abdelhalim;Mohamed Ali Badawy;Mohamed Abou El-Ghar;Mohammed Ghazal;Sohail Contractor;Eric van Bogaert;Dibson Gondim;Scott Silva;Fahmi Khalifa;Ayman El-Baz
  • 通讯作者:
    Ayman El-Baz

Ayman El-Baz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

叶绿体蛋白 TT3.2 调控水稻耐热性的分子机制研究
  • 批准号:
    24ZR1431200
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
  • 批准号:
    82304596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
HIIT 对TT+DR 小鼠肩袖肌脂肪浸润的治疗效果和机制研究
  • 批准号:
    2021JJ40949
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GhmiR858靶向TT2协同调控彩色棉纤维色泽形成的分子机制研究
  • 批准号:
    32001591
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Development of Novel Lens Technology for Next Generation Laser Manufacturing
PFI-TT:开发用于下一代激光制造的新型透镜技术
  • 批准号:
    2234413
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
  • 批准号:
    2326072
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Novel ionic liquid lubricant for next-generation information storage technology
PFI-TT:用于下一代信息存储技术的新型离子液体润滑剂
  • 批准号:
    2329767
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Novel Non-Contacting Position Estimation System for Long-Stroke Actuators
PFI-TT:用于长行程执行器的新型非接触式位置估计系统
  • 批准号:
    2329798
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: A Novel Device for Improved Mobility for Blinds and Persons with Visual Impairment
PFI-TT:一种提高盲人和视力障碍人士活动能力的新型设备
  • 批准号:
    2234409
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: High-Power Electronic Chip Devices Using Novel Materials and Innovative Strategies
PFI-TT:使用新型材料和创新策略的高功率电子芯片器件
  • 批准号:
    2329786
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: A novel human developmental toxicity assay platform using microfluidics
PFI-TT:一种使用微流体的新型人类发育毒性测定平台
  • 批准号:
    2213845
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Development and Commercialization of a Novel Tubular Proton Exchange Fuel Cell
PFI-TT:新型管式质子交换燃料电池的开发和商业化
  • 批准号:
    2213894
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Novel Silicon Photovoltaics for Efficient and Low-cost Conversion of Heat to Electricity
PFI-TT:新型硅光伏技术,可高效、低成本地将热能转化为电能
  • 批准号:
    2140694
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了