Panel Data for the Study of Network Economics and Risk Sharing

用于网络经济和风险分担研究的面板数据

基本信息

项目摘要

How individuals cope with adversity or find jobs, among other things, depends on the strength of their relationships within communities and across geographic areas. Research in many disciplines such as economics, sociology, computer science, and statistics therefore rely heavily on social network data. Collecting detailed network data on populations is very costly and, consequently, research often includes only a small part of populations in their analysis. This research project will develop innovative methods to inexpensively collect network data, use the method to create two large datasets on the socio-economic relationships among vulnerable populations. The researchers will match these network data with information on economic and labor market outcomes as well as physical and mental health status. In addition, the researchers will build statistical tools to facilitate the use of these data sets and make these datasets and the toolkit freely available to other researchers. The results of this research project will improve research on several topics such as social learning, risk sharing, and therefore improve policy making. The results will also increase the effectiveness of government and business policies. This project will develop new methods to create network data, use the methods to build two large data sets on vulnerable people, and merge these data sets with data on several economic and social outcomes and make the data sets available to researchers. To study a large sample of vulnerable populations, the network relationships among them both within the local community and across large geographic regions, one needs a tool to make the data collection scalable. This project will use Aggregate Relational Data (ARD) to make this feasible. By asking individuals the number of people with a particular trait they are linked to (for various sets of traits), the PIs can estimate a network formation model that gives a picture of how community-to-community relationships vary across regions. ARD is very cheap to collect, in contrast with detailed, complete network data. Equipped with ARD and appropriate statistical and econometric techniques, researchers can sample numerous more respondents and create more network data. This research product will benefit theorists, econometricians, statisticians, and sociologists. The results of this research will allow researchers to study topics such as diffusion, social learning, multiplexing in networks, risk sharing, and social isolation, among others. It will allow researchers and policymakers to access a granular dataset that can better inform policies generally and particularly on vulnerable populations. The results are likely to improve the quality and targeting of policies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人如何科普逆境或找到工作,除其他外,取决于他们在社区内和跨地理区域的关系的强度。因此,经济学、社会学、计算机科学和统计学等许多学科的研究严重依赖社交网络数据。 收集关于人口的详细网络数据的成本非常高,因此,研究分析往往只包括一小部分人口。该研究项目将开发创新方法,以低成本收集网络数据,并使用该方法创建两个关于弱势群体之间社会经济关系的大型数据集。研究人员将这些网络数据与经济和劳动力市场结果以及身心健康状况的信息进行匹配。 此外,研究人员将建立统计工具,以促进这些数据集的使用,并使这些数据集和工具包免费提供给其他研究人员。 该研究项目的结果将改善对社会学习、风险分担等几个主题的研究,从而改善政策制定。 这些成果还将提高政府和企业政策的有效性。 该项目将开发创建网络数据的新方法,使用这些方法建立两个关于弱势群体的大型数据集,并将这些数据集与关于若干经济和社会成果的数据合并,并向研究人员提供这些数据集。 为了研究大量的弱势群体样本,以及他们在当地社区和大的地理区域之间的网络关系,人们需要一种工具来使数据收集具有可扩展性。该项目将使用聚合关系数据(ARD)使其可行。通过询问个人与他们有联系的特定特征的人数(对于各种特征集),PI可以估计网络形成模型,该模型可以描绘社区与社区关系如何在不同地区之间变化。与详细、完整的网络数据相比,ARD的收集成本非常低。配备了ARD和适当的统计和计量经济学技术,研究人员可以抽样更多的受访者,并创建更多的网络数据。这一研究成果将使理论家、计量经济学家、统计学家和社会学家受益。这项研究的结果将使研究人员能够研究诸如扩散、社会学习、网络复用、风险分担和社会隔离等主题。它将使研究人员和政策制定者能够访问一个粒度数据集,可以更好地为一般政策提供信息,特别是关于弱势群体的政策。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arun Chandrasekhar其他文献

Liquidity, Financial Centrality, and the Value of Key Players
流动性、金融中心性和关键参与者的价值
  • DOI:
    10.3386/w30270
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arun Chandrasekhar;Robert Townsend;Juan Pablo Xandri
  • 通讯作者:
    Juan Pablo Xandri
Just a Few Seeds More: The Inflated Value of Network Data for Diffusion ∗
再多一些种子:网络数据传播的膨胀价值*
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Akbarpour;Suraj Malladi;§. AminSaberi;D. Acemoglu;Nava Ashraf;Francis Bloch;Stéphane Bonhomme;Arun Chandrasekhar;Raj Chetty;Darrell Duffie;P. Dupas;Matthew Elliot;D. Fudenberg;A. Galeotti;Ben Golub;Sanjeev Goyal;Zoe Hitzig;Emir Matthew Jackson;S. Kominers;Shengwu Li;Yucheng Liang;Greg MacNamara;Erik Madsen;Mihai Manea;Ilya Morozov;Michael Ostrovsky;David Pearce;Debraj Ray;Peter Reiss;Phil Reny;Evan Sadler;Andy Skrzypacz;Alex Teytelboym;Christopher Tonetti;Carlos Varjao
  • 通讯作者:
    Carlos Varjao
EQUILIBRIUM EFFECTS OF PAY TRANSPARENCY∗
薪酬透明度的均衡效应*
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zoë B. Cullen;Arun Chandrasekhar;Kalyan Chatterjee;Isa Chaves;Bo Cowgill;Piotr Dworczak;Jack Fanning;Chiara Farronato;Maciej Kotowski;Vijay Krishna;Jon Levin;Shengwu Li;Erik Madsen;Davide Malacrino;Alejandro Martinez;Paul R. Milgrom;Muriel Niederle;Kareen Rozen;Ilya Segal;Isaac Sorkin;Jesse Shapiro;B. Steinberg;Takuo Sugaya;Catherine Tucker;Emmanuel Vespa;Alistair Wilson
  • 通讯作者:
    Alistair Wilson
Federal Reserve Bank of New York Staff Reports World Welfare Is Rising: Estimation Using Nonparametric Bounds on Welfare Measures
纽约联邦储备银行工作人员报告世界福利正在上升:使用福利措施的非参数界限进行估计
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Pinkovskiy;D. Acemoglu;Tony Atkinson;David Autor;Arun Chandrasekhar;P. Chiappori;V. Chernozhukov;A. Deaton;Melissa Dell;Richard Eckaus;Susan Elmes;Jerry Hausman;Horacio Larreguy;James Mcdonald;Whitney Newey;B. Olken;Adam Sacarny;Emmanuel Saez;Xavier Sala;B. Salanié;Paolo Siconolfi;James Snyder;E. Vytlacil;Michael Woodford
  • 通讯作者:
    Michael Woodford

Arun Chandrasekhar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arun Chandrasekhar', 18)}}的其他基金

Workshops on Network Economics
网络经济学研讨会
  • 批准号:
    1757223
  • 财政年份:
    2018
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Standard Grant
Talk, Noise, and Silence in Networks: Obstacles to Information Sharing
网络中的谈话、噪音和沉默:信息共享的障碍
  • 批准号:
    1658940
  • 财政年份:
    2017
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Continuing Grant
The impact of participation policies on socioeconomic interactions.
参与政策对社会经济互动的影响。
  • 批准号:
    1559469
  • 财政年份:
    2016
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiplexing: Theories and Tests of Interactions Between Types of Relationships
合作研究:多重性:关系类型之间相互作用的理论和测试
  • 批准号:
    1629328
  • 财政年份:
    2016
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Standard Grant
Experimentally Identifying Constraints to Risk Sharing: Separating Limited Commitment, Moral Hazard and Hidden Income
通过实验识别风险分担的约束:分离有限承诺、道德风险和隐性收入
  • 批准号:
    1530791
  • 财政年份:
    2015
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hierarchical modelling with recent panel data to study the relationship between political trust and political participation.
利用最新面板数据进行分层建模,研究政治信任与政治参与之间的关系。
  • 批准号:
    2735086
  • 财政年份:
    2022
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Studentship
Life course study of the disability person and child by constructing household panel data.
通过构建家庭面板数据对残疾人和儿童进行生命历程研究。
  • 批准号:
    22K01981
  • 财政年份:
    2022
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical study on complementarity among production factors and income inequality using panel data
基于面板数据的生产要素互补性与收入不平等的实证研究
  • 批准号:
    21K01436
  • 财政年份:
    2021
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Participation in voluntary activities and incident dementia among younger older population: A panel data study
年轻老年人群参与志愿活动和痴呆事件:一项面板数据研究
  • 批准号:
    20K02392
  • 财政年份:
    2020
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A cross-disciplinary study of inequality using data from a panel survey of parents and children
使用父母和儿童小组调查的数据对不平等进行跨学科研究
  • 批准号:
    19H01637
  • 财政年份:
    2019
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Historical origins of the gender wage gap: Study on panel wage data of the Mitsui Shipping Line
性别工资差距的历史根源:三井航运面板工资数据研究
  • 批准号:
    19K01787
  • 财政年份:
    2019
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of effective utilization and extension about micro and panel data in Japanese agricultural statistics
日本农业统计中微观数据和面板数据的有效利用和推广研究
  • 批准号:
    18K05846
  • 财政年份:
    2018
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Educational Progress of Children at Risk of Low Academic Achievement: A Psychometrically Informed Investigation of Educational Outcomes and Resilience Factors with Longitudinal Data of the National Educational Panel Study
面临学业成绩低下风险的儿童的教育进展:利用国家教育小组研究的纵向数据对教育成果和弹性因素进行心理测量调查
  • 批准号:
    390666287
  • 财政年份:
    2017
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Infrastructure Priority Programmes
Acculturation as an effective mechanism on immigrant students academic achievement and well-being. An analysis of data of the National Educational Panel Study (NEPS).
文化适应作为移民学生学业成就和福祉的有效机制。
  • 批准号:
    390743020
  • 财政年份:
    2017
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Infrastructure Priority Programmes
An quantitative study of the history of intergovernmental fiscal transfers: the analysis of long-term panel data since the Meiji Restoration
政府间财政转移史的定量研究——明治维新以来的长期面板数据分析
  • 批准号:
    17K03795
  • 财政年份:
    2017
  • 资助金额:
    $ 77.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了