PPoSS: LARGE: Intel: Combining Learning and Formal Verification for Scalable Machine Programming (ScaMP)
PPoSS:大:英特尔:结合学习和形式验证实现可扩展机器编程 (ScaMP)
基本信息
- 批准号:2217064
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modem applications combine the need for extreme scalability with enormous complexity to provide rich functionality to millions of simultaneous users. In this context, programmer productivity is achieved by building on deep stacks of pre-existing components and systems software, allowing programmers to focus on core application logic. However, for the applications with the highest performance needs, the standard approach is not enough; instead, painstaking performance engineering effort is needed for the code to take advantage of all available accelerators and exploit all the opportunities for optimization. The cost of this effort can make applications difficult to adapt to changes in requirements or to the newly available hardware. The ScaMP project is developing a novel programming system that offers a new approach for building modern applications with strong performance and scalability requirements. ScaMP stands for Scalable Machine Programming, and the project’s novelty is the way in which it leverages advances in machine learning and programming-language technology to capture users’ intent at the high level, translate that intent into a working implementation, make the generated code perform efficiently on a variety of platforms, and support its maintenance and evolution. ScaMP provides an iterative development model that combines extremely high-level specification with fine control over low-level implementation decisions and a high degree of performance portability. The impact of the ScaMP project will be to lower the cost of developing high-performance applications. ScaMP decomposes into four main layers. First, incremental multimodal specification starts from natural language and informal diagrams and refines them into precise component specifications written in safe stackable smart domain-specific languages. These DSLs make up the second layer of the system and can generate architecture-independent distributed code through Coq-proved algebraic rewrite rules. The next layer is correct-by-construction code-generator generation, which produces compiler backends for multiple heterogeneous architectures, supporting generation of highly optimized assembly code, guaranteeing correctness using Coq-proved translation validation. Both of these layers use learning, to infer both models of hardware platforms and strategies for optimizing for those platforms effectively; as well as formal methods, to create proof that programs were optimized correctly. Finally, the last layer supports lifetime monitoring, learning, and adaptation to manage the more "data-science" side of developing and evolving a heterogeneous software system, using measurement to drive regeneration and scaling out of higher-performance code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代应用联合收割机结合了对极端可扩展性的需求和巨大的复杂性,以便为数百万同时使用的用户提供丰富的功能。在这种情况下,程序员的生产力是通过构建预先存在的组件和系统软件的深层堆栈来实现的,允许程序员专注于核心应用程序逻辑。然而,对于具有最高性能需求的应用程序,标准方法是不够的;相反,代码需要艰苦的性能工程工作,以利用所有可用的加速器并利用所有优化机会。这种努力的成本可能会使应用程序难以适应需求的变化或新的可用硬件。ScaMP项目正在开发一种新的编程系统,为构建具有强大性能和可扩展性要求的现代应用程序提供了一种新方法。ScaMP代表可扩展机器编程,该项目的新颖之处在于它利用机器学习和编程语言技术的进步来捕获用户在高级别上的意图,将该意图转换为工作实现,使生成的代码在各种平台上有效执行,并支持其维护和发展。ScaMP提供了一个迭代开发模型,它将极高级别的规范与对低级别实现决策的精细控制以及高度的性能可移植性相结合。ScaMP项目的影响将是降低开发高性能应用程序的成本。ScaMP分解为四个主要层。首先,增量式多模态规范从自然语言和非正式图开始,并将其细化为用安全的可堆叠智能域特定语言编写的精确组件规范。这些DSL构成了系统的第二层,并且可以通过Coq证明的代数重写规则生成与架构无关的分布式代码。下一层是按构造正确的代码生成器,它为多个异构架构生成编译器后端,支持生成高度优化的汇编代码,使用Coq证明的翻译验证来保证正确性。这两个层都使用学习来推断硬件平台的模型和有效优化这些平台的策略;以及形式化方法,以证明程序被正确优化。最后,最后一层支持生命周期监控、学习和适应,以管理开发和演化异构软件系统的更多"数据科学"方面,使用度量来驱动更高性能代码的再生和扩展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saman Amarasinghe其他文献
NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks
NetBlocks:高性能自定义主机网络堆栈的分段布局
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ajay Brahmakshatriya;Chris Rinard;M. Ghobadi;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
The Continuous Tensor Abstraction: Where Indices are Real
连续张量抽象:索引为实数的地方
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jaeyeon Won;Willow Ahrens;J. Emer;Saman Amarasinghe - 通讯作者:
Saman Amarasinghe
Mechanised Hypersafety Proofs about Structured Data: Extended Version
关于结构化数据的机械化超安全证明:扩展版本
- DOI:
10.1145/3656403 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vladimir Gladshtein;Qiyuan Zhao;Willow Ahrens;Saman Amarasinghe;Ilya Sergey - 通讯作者:
Ilya Sergey
Saman Amarasinghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saman Amarasinghe', 18)}}的其他基金
PFI-TT: A tool to automatically generate and optimize programs to operate on complex big data
PFI-TT:自动生成和优化程序以处理复杂大数据的工具
- 批准号:
2044424 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Microfluidics: A Universal Substrate for Biological Computing
合作研究:可编程微流体:生物计算的通用基础
- 批准号:
0541319 - 财政年份:2006
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
NGS: StreamIt: A Language and a Compiler for Streaming Applications
NGS:StreamIt:流应用程序的语言和编译器
- 批准号:
0305453 - 财政年份:2004
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
ITR: A Language, Compilers and Tools for the Streaming Application Domain
ITR:流应用程序领域的语言、编译器和工具
- 批准号:
0325297 - 财政年份:2003
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
CISE Experimental Partnerships: MIT Raw Machine
CISE 实验合作伙伴:MIT Raw Machine
- 批准号:
0071841 - 财政年份:2000
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 250万 - 项目类别:
Fellowship
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Collaborative R&D
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
- 批准号:
DP240102450 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Research Grant
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant