Discovery of new crystallization pathways in forming biominerals
发现形成生物矿物的新结晶途径
基本信息
- 批准号:2220274
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical description Perfect crystals are formed when atoms order themselves in a regular geometry. This crystallization happens all the time in nature, resulting in gemstones, minerals, and rocks, but it is also relevant to and widespread in industry, for example to make semiconductor crystals for electronics, or to produce crystalline chemicals, pharmaceuticals, or food products. Understanding crystallization, therefore, promotes the progress of science and benefits society by improving fundamental knowledge and applied materials production. The problem, however, is that crystallization in all these natural and synthetic systems happens too fast, at high temperature, and at high pressure, making it difficult or impossible to observe crystallization as it happens. Researchers have a better chance to understand crystallization by observing it in biominerals, such as coral skeletons and seashells, where crystals grow at room temperature, ambient pressure, and very, very slowly, taking a day or so to crystallize. This research will involve talented undergraduate students who are members of underrepresented minorities in science and academia, and make them publish peer-reviewed journal articles, as previously done by these researchers. Technical descriptionObserving crystallization as it happens reveals the presence or absence of transient precursor phases, which can be crystalline or amorphous minerals. Preliminary, unpublished, unconfirmed data suggest that there are two kinds of transient precursors to biomineral formation: crystalline and amorphous. Transient crystalline phases have only been observed once before in only one biomineral, planktonic foraminifera, whereas transient amorphous phases have been observed extensively and repeatedly sea urchin spicules and spines, in mollusk shells, and in coral skeletons. The principal investigator and her group will strive explore the existence of transient crystalline precursors in many different biominerals, by analyzing data they already have and new data, to be acquired on new, unexplored biominerals: brachiopods and benthic foraminifera. They will develop software to build the energy landscapes that determine crystallization rates for all transient and stable phases, then use this software to analyze data new and old. They will develop machine learning and principal component analysis to find new, unknown mineral phases in new and old data. Even if they discover that transient crystalline phases do not exist in most biominerals, the new energy landscapes, the new biominerals and their formation mechanisms, and the potential new phases identified by machine learning in new and old data will make this research produce multiple interesting discoveries, while employing and training talented underrepresented undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当原子以常规的几何形状订购自己时,非技术描述形成完美的晶体。这种结晶一直在自然界中发生,导致宝石,矿物质和岩石,但它也与行业中的广泛相关,例如使电子产品的半导体晶体或生产结晶化学品,药品,药品或食品。因此,了解结晶,通过改善基本知识和应用材料生产来促进科学和福利社会的进步。但是,问题在于,在所有这些天然和合成系统中的结晶发生在高温下和高压下,因此很难或不可能在发生时观察结晶。研究人员有更好的机会通过在诸如珊瑚骨骼和贝壳等生物矿物质中观察结晶,在室温下,环境压力和非常缓慢的晶体生长,需要一天左右的时间才能结晶。这项研究将涉及有才华的本科生,他们是科学和学术界人数不足的成员,并使其发表经过同行评审的期刊文章,就像这些研究人员以前所做的那样。技术描述在发生时的结晶效果揭示了可以是晶体或无定形矿物的瞬态前体相。初步,未发表,未经证实的数据表明,生物矿物形成有两种瞬态前体:晶体和无定形。瞬态晶体相仅在一个生物矿物,浮游有孔虫中才观察到一次,而在一种瞬态的无定形相位,在微米壳和珊瑚骨架中,已经广泛地有反复地观察到瞬时的无定形相。首席研究员和她的小组将通过分析他们已经拥有的数据和新数据,探索许多不同生物矿物质中的瞬时晶体前体的存在,并将在新的未探索的生物膜上获取:Brachiopods和Barachiopods和Benthenic Foraminifera。他们将开发软件来构建确定所有瞬态和稳定阶段结晶速率的能源景观,然后使用此软件来分析数据和旧数据。他们将开发机器学习和主要组件分析,以在新数据和旧数据中找到新的未知矿物阶段。 Even if they discover that transient crystalline phases do not exist in most biominerals, the new energy landscapes, the new biominerals and their formation mechanisms, and the potential new phases identified by machine learning in new and old data will make this research produce multiple interesting discoveries, while employing and training talented underrepresented undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the基金会的智力优点和更广泛的影响评论标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orientation-controlled crystallization of γ-glycine films with enhanced piezoelectricity
具有增强压电性的γ-甘氨酸薄膜的取向控制结晶
- DOI:10.1039/d2tb00997h
- 发表时间:2022
- 期刊:
- 影响因子:7
- 作者:Sui, Jiajie;Li, Jun;Gu, Long;Schmidt, Connor A.;Zhang, Ziyi;Shao, Yan;Gazit, Ehud;Gilbert, Pupa U.;Wang, Xudong
- 通讯作者:Wang, Xudong
Black Drum Fish Teeth: Built for Crushing Mollusk Shells
- DOI:10.1016/j.actbio.2021.10.023
- 发表时间:2021-12-11
- 期刊:
- 影响因子:9.7
- 作者:Deng, Zhifei;Loh, Hyun-Chae;Li, Ling
- 通讯作者:Li, Ling
Biomineral mesostructure
- DOI:10.1557/s43577-023-00479-7
- 发表时间:2023-03
- 期刊:
- 影响因子:5
- 作者:P. Gilbert
- 通讯作者:P. Gilbert
Deep learning virtual indenter maps nanoscale hardness rapidly and non-destructively, revealing mechanism and enhancing bioinspired design
- DOI:10.1016/j.matt.2023.03.031
- 发表时间:2023-04
- 期刊:
- 影响因子:18.9
- 作者:Andrew J. Lew;C. Stifler;A. Cantamessa;A. Tits;D. Ruffoni;P. Gilbert;M. Buehler
- 通讯作者:Andrew J. Lew;C. Stifler;A. Cantamessa;A. Tits;D. Ruffoni;P. Gilbert;M. Buehler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pupa Gilbert其他文献
Pupa Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pupa Gilbert', 18)}}的其他基金
Discovery of New Phenomena in Biomineral Formation
生物矿物形成新现象的发现
- 批准号:
1603192 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Structure of Mollusk Shells at Different Length-Scales
不同长度尺度的软体动物壳的结构
- 批准号:
1105167 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Molecular-scale Interactions at the Peptide-mineral Interface
肽-矿物质界面的分子尺度相互作用
- 批准号:
0613972 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SGER: The Sensitivity of XANES Spectroscopy to Protein Folding, Misfoding and Aggregation
SGER:XANES 光谱对蛋白质折叠、错误折叠和聚集的敏感性
- 批准号:
0646018 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SGER: The Sensitivity of XANES Spectroscopy to Protein Folding
SGER:XANES 光谱对蛋白质折叠的敏感性
- 批准号:
0523905 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
- 批准号:32372277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
红壤稻田微生物光电反硝化的新现象与新机制
- 批准号:42377213
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮杂吲哚类化合物靶向新冠刺突蛋白阻断病毒感染的机制研究
- 批准号:82304578
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一个新的拟核结合蛋白NapR及其调控分枝杆菌抗氧化生长的分子机理研究
- 批准号:32360013
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
针对新冠病毒3CLpro的新型PROTAC分子的构建及其抗耐药研究
- 批准号:82304283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
- 批准号:
10584878 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Leveraging protein dynamics to drug filovirus protein-nucleic acid interactions using simulations and experiments
通过模拟和实验利用蛋白质动力学来药物丝状病毒蛋白质-核酸相互作用
- 批准号:
10680759 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Identification of luteolin as a BRAF-degrading molecule for developing new therapeutic agents
鉴定木犀草素作为 BRAF 降解分子,用于开发新的治疗药物
- 批准号:
10356619 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别: