NRI: Enhancing Autonomous Underwater Robot Perception for Aquatic Species Management

NRI:增强自主水下机器人感知以进行水生物种管理

基本信息

  • 批准号:
    2220956
  • 负责人:
  • 金额:
    $ 92.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

The underwater domain takes up almost four-fifths of the planet and has significant bearing on human well-being, ecological balance, and accordingly, socio-economic prosperity. However, it poses significant challenges to exploration by autonomous systems, particularly in perception and localization capabilities. Many applications, e.g., in environmental monitoring and ecosystem preservation, would benefit significantly from using autonomous underwater vehicles (AUVs), with improved efficiency, productivity, and safety. In particular, the preservation of the underwater ecosystem is of utmost importance in maintaining proper ecological balance and is a significant undertaking where autonomous underwater systems can be valuable tools. This project will integrate expertise in robotics and marine conservation biology to create novel capabilities for autonomous underwater robotic perception and navigation which will make it possible for robots to identify, track, and localize aquatic species. The research team will integrate theoretical advances in robot vision, learning, and localization on an affordable, open-source autonomous robotic platform using field trials, publications, software, and design and dataset releases, in addition to tutorials and workshops in conferences. The research team will also incorporate research results into course curricula to better prepare students for jobs in robotics and intelligent systems while advancing knowledge in conservation biology. The investigators will pay particular attention to recruit students from underrepresented groups to the research team. This project will integrate expertise in robotics and marine conservation biology to create novel capabilities for autonomous underwater robotic perception and navigation which will make it possible for robots to identify, track, and localize aquatic species. This research will enable AUVs to act as effective robotic assistants in littoral habitats to manage these ecosystems. Specifically, the investigators will create methods to (1) enhance multimodal underwater imagery specifically for robust detection of aquatic species, (2) use zero- and/or one-shot learning for identifying aquatic species with limited training imagery, and (3) combine acoustic and bathymetric methods for accurate underwater robot localization. The research outcomes will be evaluated both individually and as an integrated, coherent system onboard underwater vehicles at appropriate field locations. Investigators have complementary expertise in underwater robotics and aquatic ecology. The integration of the diverse expertise possessed by the research team will lead to major advances in underwater autonomous robotics and enable the use of AUVs in a domain of significant ecological and economic importance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水下领域几乎占地球的五分之四,对人类福祉、生态平衡以及社会经济繁荣具有重大影响。然而,它对自主系统的探索提出了重大挑战,特别是在感知和定位能力方面。许多应用,例如,在环境监测和生态系统保护方面,使用自主水下航行器(AUV)将大大受益,提高效率,生产力和安全性。特别是,保护水下生态系统对于维持适当的生态平衡至关重要,是一项重要的工作,自主水下系统可以成为宝贵的工具。该项目将整合机器人和海洋保护生物学方面的专业知识,为自主水下机器人感知和导航创造新的能力,使机器人能够识别,跟踪和定位水生物种。该研究团队将利用现场试验、出版物、软件、设计和数据集发布,以及会议中的教程和研讨会,在一个负担得起的开源自主机器人平台上整合机器人视觉、学习和本地化方面的理论进展。该研究团队还将把研究成果纳入课程,以更好地为学生在机器人和智能系统方面的工作做好准备,同时推进保护生物学的知识。调查人员将特别注意从代表性不足的群体中招募学生加入研究小组。该项目将整合机器人和海洋保护生物学方面的专业知识,为自主水下机器人感知和导航创造新的能力,使机器人能够识别,跟踪和定位水生物种。这项研究将使AUV能够在沿岸的栖息地充当有效的机器人助手,以管理这些生态系统。具体而言,研究人员将创建方法来(1)增强多模式水下图像,专门用于水生物种的稳健检测,(2)使用零和/或一次性学习来识别具有有限训练图像的水生物种,以及(3)联合收割机结合声学和测深方法,以实现准确的水下机器人定位。研究成果将在适当的实地地点进行单独评估,并作为一个综合、连贯的系统在水下航行器上进行评估。研究人员补充说, 水下机器人和水生生态学方面的专业知识。该研究团队所拥有的各种专业知识的整合将导致水下自主机器人技术的重大进步,并使AUV能够在具有重要生态和经济意义的领域中使用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SIREN: Underwater Robot-to-Human Communication Using Audio
SIRN:水下机器人与人类使用音频进行通信
  • DOI:
    10.1109/lra.2023.3303719
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Fulton, Michael;Sattar, Junaed;Absar, Rafa
  • 通讯作者:
    Absar, Rafa
HREyes: Design, Development, and Evaluation of a Novel Method for AUVs to Communicate Information and Gaze Direction *
HREyes:设计、开发和评估 AUV 通信信息和注视方向的新方法 *
  • DOI:
    10.1109/icra48891.2023.10161179
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fulton, Michael;Prabhu, Aditya;Sattar, Junaed
  • 通讯作者:
    Sattar, Junaed
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junaed Sattar其他文献

Sequential Monte Carlo Methods in Computer Vision
计算机视觉中的顺序蒙特卡罗方法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junaed Sattar
  • 通讯作者:
    Junaed Sattar
On the performance of color tracking algorithms for underwater robots under varying lighting and visibility
不同光照和能见度下水下机器人颜色跟踪算法的性能
A risk assessment infrastructure for powered wheelchair motion commands without full sensor coverage
没有完整传感器覆盖的电动轮椅运动命令的风险评估基础设施
Visual identification of biological motion for underwater human–robot interaction
水下人机交互生物运动的视觉识别
  • DOI:
    10.1007/s10514-017-9644-y
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Junaed Sattar;G. Dudek
  • 通讯作者:
    G. Dudek
BATHYMETRY-BASED LOCALIZATION OF AUTONOMOUS UNDERWATER ROBOTS
自主水下机器人基于测深的定位
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jungseok Hong;Michael Fulton;Junaed Sattar
  • 通讯作者:
    Junaed Sattar

Junaed Sattar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junaed Sattar', 18)}}的其他基金

Towards Robust and Natural Underwater Human-Robot Interaction
实现稳健、自然的水下人机交互
  • 批准号:
    1845364
  • 财政年份:
    2019
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Autonomous Quadrotors for 3D Modeling and Inspection of Outdoor Infrastructure
NRI:协作研究:用于室外基础设施 3D 建模和检查的自主四旋翼飞行器
  • 批准号:
    1637875
  • 财政年份:
    2016
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Standard Grant

相似海外基金

Enhancing Navigation Accuracy in Autonomous Vehicles using Perception Systems and Deep learning
使用感知系统和深度学习提高自动驾驶车辆的导航精度
  • 批准号:
    559305-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Enhancing Autonomy and Decision-Making Capabilities of an Obstacle Avoidance System for Autonomous Underwater Vehicles Operating Under Ice
增强冰下自主水下航行器避障系统的自主性和决策能力
  • 批准号:
    2757066
  • 财政年份:
    2022
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Studentship
Enhancing user authentication in decentralized autonomous organizations
增强去中心化自治组织中的用户身份验证
  • 批准号:
    580503-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 92.93万
  • 项目类别:
    University Undergraduate Student Research Awards
I-Corps: Enhancing Autonomous Capabilities of Unmanned Aerial and Underwater Vehicles
I-Corps:增强无人机和水下航行器的自主能力
  • 批准号:
    2114712
  • 财政年份:
    2021
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Standard Grant
Enhancing Navigation Accuracy in Autonomous Vehicles using Perception Systems and Deep learning
使用感知系统和深度学习提高自动驾驶车辆的导航精度
  • 批准号:
    559305-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Enhancing Human-Robot Interaction through the Presentation of an Autonomous Robot's Cognitive State
通过呈现自主机器人的认知状态增强人机交互
  • 批准号:
    19K20368
  • 财政年份:
    2019
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Empirical research on the effects of theoretical and autonomous pronunciation learning for enhancing awareness of the English phonological system
理论和自主发音学习对增强英语音系意识效果的实证研究
  • 批准号:
    17K02914
  • 财政年份:
    2017
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing Safety, Reliability and Airworthiness of BVLOS Autonomous UAV operations
提高 BVLOS 自主无人机操作的安全性、可靠性和适航性
  • 批准号:
    103663
  • 财政年份:
    2017
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Collaborative R&D
EARS: Enhancing Spectrum Efficiency of Autonomous and Agile Hybrid FSO/RF Systems
EARS:提高自主和敏捷混合 FSO/RF 系统的频谱效率
  • 批准号:
    1343372
  • 财政年份:
    2013
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Standard Grant
Multi-Data Fusion and intelligent connectivity enhancing autonomous transport for users
多数据融合和智能连接增强用户的自主运输
  • 批准号:
    131369
  • 财政年份:
    2013
  • 资助金额:
    $ 92.93万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了