Towards Robust and Natural Underwater Human-Robot Interaction

实现稳健、自然的水下人机交互

基本信息

  • 批准号:
    1845364
  • 负责人:
  • 金额:
    $ 10.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-15 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

The underwater domain takes up almost four-fifths of the planet and is inherently hostile towards human exploration. However, in numerous applications in the marine environment (e.g., in surveillance, environmental monitoring, security, and search-and-rescue), human assessment is necessary for efficient and effective task completion. Current technology for underwater exploration sees limited applications of autonomous underwater vehicles (AUVs) but relies heavily on remotely operated vehicles, which unfortunately does not take advantage of robot autonomy. This project will develop novel algorithms and protocols to enable humans to communicate safely with AUVs while preserving and leveraging their autonomy. Specifically, the intent is to create novel methods for gesture- and motion-based bidirectional human-robot communication methods and enable autonomous underwater robots to detect, identify and interact with specific individuals. The research objectives will be evaluated individually and as an integrated, coherent system onboard underwater vehicles. The proposed research has the potential to create a fundamentally new direction in human-in-the-loop field robotics, with underwater robot companions being able to assist divers in a range of tasks and even learning to carry out these tasks in an autonomous manner, greatly reducing risk to humans. This research will also impact a broad range of disciplines, including human-machine dialog, machine vision, activity recognition, and robot control.This research will develop novel algorithms and protocols to enable humans to communicate safely with AUVs while preserving and leveraging their autonomy. Specific goals include: development of a gesture-based human-to-robot language with multiple communication granularities; creation of algorithms for visual identification of humans by learning from spatial and periodic cues; and development of a non-verbal, motion-based underwater robot-to-human communication scheme. The research objectives will be evaluated individually and as an integrated, coherent system onboard underwater vehicles. The investigation into gesture-based visual languages will quantify the detectability, usability, and efficacy of such methods in realistic settings. Statistical, convolutional and generative learning-based approaches will be applied to understand both identifiable human features and gestural communication. Additionally, robot body language and motion will be used as cues for robot-to-human non-verbal communication. These methods will be quantitatively and qualitatively validated via user studies and robot field trials to characterize their advantages and limitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水下领域几乎占据了地球五分之四的面积,天生就对人类的探索怀有敌意。然而,在海洋环境中的许多应用中(例如,在监视、环境监测、安全和搜救中),人类评估对于高效和有效地完成任务是必要的。目前的水下探测技术认为自主水下机器人(AUV)的应用有限,但严重依赖于远程操作的机器人,不幸的是,远程操作的机器人没有利用机器人的自主性。该项目将开发新的算法和协议,使人类能够安全地与AUV进行通信,同时保持和利用它们的自主性。具体地说,其目的是为基于手势和运动的双向人-机器人通信方法创造新的方法,并使自主水下机器人能够检测、识别特定的个人并与其互动。研究目标将单独评估,并作为水下航行器上的综合、连贯系统进行评估。拟议中的研究有可能在人类在环领域机器人领域开创一个全新的方向,水下机器人同伴能够帮助潜水员完成一系列任务,甚至能够学习以自主方式执行这些任务,从而极大地降低人类面临的风险。这项研究还将影响广泛的学科,包括人机对话、机器视觉、活动识别和机器人控制。这项研究将开发新的算法和协议,使人类能够与AUV安全通信,同时保持和利用它们的自主性。具体目标包括:开发具有多种通信粒度的基于手势的人与机器人之间的语言;通过学习空间和周期线索创建用于人类视觉识别的算法;以及开发非语言的、基于运动的水下机器人与人之间的交流方案。研究目标将单独评估,并作为水下航行器上的综合、连贯系统进行评估。对基于手势的视觉语言的研究将量化这些方法在现实环境中的可检测性、可用性和有效性。将应用基于统计、卷积和生成性学习的方法来理解可识别的人类特征和手势交流。此外,机器人的肢体语言和动作将被用作机器人与人类之间非语言交流的线索。这些方法将通过用户研究和机器人现场试验进行定量和定性的验证,以表征它们的优势和局限性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semantically-Aware Strategies for Stereo-Visual Robotic Obstacle Avoidance
Person-following by autonomous robots: A categorical overview
Design and Experiments with LoCO AUV: A Low Cost Open-Source Autonomous Underwater Vehicle
LoCO AUV 的设计和实验:低成本开源自主水下航行器
  • DOI:
    10.1109/iros45743.2020.9341007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edge, Chelsey;Sakib Enan, Sadman;Fulton, Michael;Hong, Jungseok;Mo, Jiawei;Barthelemy, Kimberly;Bashaw, Hunter;Kallevig, Berik;Knutson, Corey;Orpen, Kevin
  • 通讯作者:
    Orpen, Kevin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junaed Sattar其他文献

Sequential Monte Carlo Methods in Computer Vision
计算机视觉中的顺序蒙特卡罗方法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junaed Sattar
  • 通讯作者:
    Junaed Sattar
On the performance of color tracking algorithms for underwater robots under varying lighting and visibility
不同光照和能见度下水下机器人颜色跟踪算法的性能
A risk assessment infrastructure for powered wheelchair motion commands without full sensor coverage
没有完整传感器覆盖的电动轮椅运动命令的风险评估基础设施
Visual identification of biological motion for underwater human–robot interaction
水下人机交互生物运动的视觉识别
  • DOI:
    10.1007/s10514-017-9644-y
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Junaed Sattar;G. Dudek
  • 通讯作者:
    G. Dudek
BATHYMETRY-BASED LOCALIZATION OF AUTONOMOUS UNDERWATER ROBOTS
自主水下机器人基于测深的定位
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jungseok Hong;Michael Fulton;Junaed Sattar
  • 通讯作者:
    Junaed Sattar

Junaed Sattar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junaed Sattar', 18)}}的其他基金

NRI: Enhancing Autonomous Underwater Robot Perception for Aquatic Species Management
NRI:增强自主水下机器人感知以进行水生物种管理
  • 批准号:
    2220956
  • 财政年份:
    2023
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Autonomous Quadrotors for 3D Modeling and Inspection of Outdoor Infrastructure
NRI:协作研究:用于室外基础设施 3D 建模和检查的自主四旋翼飞行器
  • 批准号:
    1637875
  • 财政年份:
    2016
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Continuing Grant
Automatic detection of vaping rate and patterning in the lab and the natural environment using Flexible, Robust Instrumentation of Electronic Nicotine Delivery Systems (FRIENDS)
使用灵活、稳健的电子尼古丁输送系统 (FRIENDS) 仪器自动检测实验室和自然环境中的吸烟率和模式
  • 批准号:
    10516860
  • 财政年份:
    2022
  • 资助金额:
    $ 10.15万
  • 项目类别:
CAREER: Flexible and Robust Reasoning in Natural Language
职业:灵活而稳健的自然语言推理
  • 批准号:
    2145280
  • 财政年份:
    2022
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Continuing Grant
Automatic detection of vaping rate and patterning in the lab and the natural environment using Flexible, Robust Instrumentation of Electronic Nicotine Delivery Systems (FRIENDS)
使用灵活、稳健的电子尼古丁输送系统 (FRIENDS) 仪器自动检测实验室和自然环境中的吸烟率和模式
  • 批准号:
    10664004
  • 财政年份:
    2022
  • 资助金额:
    $ 10.15万
  • 项目类别:
Adversarial Training for Robust and Generalizable Natural Language Processing
稳健且可推广的自然语言处理的对抗性训练
  • 批准号:
    21K17802
  • 财政年份:
    2021
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Co-desIgning Robust natural Capital LandscapEs (CIRCLE)
共同设计稳健的自然资本景观(圆圈)
  • 批准号:
    NE/V007890/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Fellowship
A robust heterologous expression system of intact fungal secondary metabolite gene clusters for natural product discovery in Aspergillus nidulans
完整真菌次生代谢物基因簇的强大异源表达系统,用于构巢曲霉天然产物的发现
  • 批准号:
    9120977
  • 财政年份:
    2016
  • 资助金额:
    $ 10.15万
  • 项目类别:
Development of High Performance, Robust and Affordable Ultrafast Fiber Lasers for Research in the Natural Sciences, Clinical Medicine and Industrial Applications
开发高性能、坚固且经济实惠的超快光纤激光器,用于自然科学、临床医学和工业应用的研究
  • 批准号:
    438422-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of High Performance, Robust and Affordable Ultrafast Fiber Lasers for Research in the Natural Sciences, Clinical Medicine and Industrial Applications
开发高性能、坚固且经济实惠的超快光纤激光器,用于自然科学、临床医学和工业应用的研究
  • 批准号:
    438422-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Continuation of the project on using an assay for yeast lifespan measurement as a robust approach for assessing the anti-aging efficiencies of numerous natural products
继续使用酵母寿命测定法作为评估多种天然产品抗衰老功效的可靠方法的项目
  • 批准号:
    469397-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Engage Plus Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了