Diffusiophoretic Bioaugmentation: Boosting the Bacterial Motility in Soil Matrix by Chemical Gradients for Enhanced Bioremediation

扩散电泳生物强化:通过化学梯度增强土壤基质中的细菌活力,以增强生物修复

基本信息

  • 批准号:
    2223737
  • 负责人:
  • 金额:
    $ 33.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

When a toxic chemical spill occurs, the chemicals often leak into the soil, making it difficult to remove because the chemicals can easily seep deep underground. To clean up the spill, chemical-degrading bacteria can be injected into the contaminated soil. One of the major challenges of this approach is delivering the bacteria directly to the contaminated site. If the chemicals are deep in the soil, the injected bacteria must sense and swim towards the contaminants which can be a slow process. The goal of this project is to speed up the movement of the bacteria toward the contaminated site by injecting the bacteria into the ground with additional non-toxic chemicals that can enhance their motion by creating chemical gradients. Successful completion of this project will benefit society by developing environmental remediation strategies to mitigate ecological and human health impacts of toxic pollutants. Additional benefits to society will be accomplished through student education and training including the mentoring of a graduate student at the University at Buffalo.Toxic chemical spills require processes to degrade the chemicals to avoid environmental and human health impacts. Successful bioremediation of chemical spills requires directing decomposer bacteria to the target soil micropores that are deep in the subsurface where contaminants are likely to persist. The small bacteria can passively advect across permeable regions of the subsurface via pore flow. However, impervious micropores, which are prevalent in the soil matrix, can only be accessed by active motility or Brownian motion. These areas often tend to hold a significant amount of contaminants since they cannot be easily swept away by the pore flow, thus limiting the remediation efficacy. Therefore, there is a critical need to develop an effective way to disperse bacteria to hard-to reach spaces. The main objective of this proposal is to achieve enhanced bioremediation by introducing chemical heterogeneity in the soil. The central hypothesis is that the chemical gradients created within the soil matrix during bioremediation can accelerate the bacterial transport not only by chemotaxis, the movement by intracellular transduction of an organism in response to chemical stimulus, but also by diffusiophoresis, the directed migration of colloidal particles along chemical gradients due to the physicochemical interactions between the surrounding chemicals and the particle surface. When the chemical and cell surface conditions are met, diffusiophoresis can enhance the transport of bacteria by orders of magnitude compared to Brownian motion regardless of the bacteria type. This investigation will include experimental characterization of the interplay between chemotaxis and diffusiophoresis in microfluidic systems and laboratory-scale bioremediation demonstration in the soil matrix. This research aims to elucidate the fundamental aspects of bacterial diffusiophoresis and demonstrate an effective, low-cost strategy to enhance bioremediation . Further societal benefits include introducing undergraduate engineering students to microbial engineering through a hands-on course that will be developed to include various aspects from cell culture and microfluidic fabrication to laboratory-scale bioremediation as well as mentoring of a graduate student.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当有毒化学品泄漏发生时,化学品通常会泄漏到土壤中,因为化学品很容易渗透到地下深处,所以很难清除。为了清理泄漏,可以将化学降解细菌注入污染的土壤中。这种方法的主要挑战之一是将细菌直接运送到污染场地。如果化学物质在土壤深处,注入的细菌必须感知并游向污染物,这可能是一个缓慢的过程。该项目的目标是通过将细菌注入地下,并加入额外的无毒化学物质,通过创建化学梯度来增强细菌的运动,从而加快细菌向污染场地的运动。该项目的成功完成将通过制定环境修复策略来减轻有毒污染物对生态和人类健康的影响,造福社会。通过学生教育和培训,包括指导布法罗大学的一名研究生,将为社会带来额外的好处。有毒化学品泄漏需要降解化学品的过程,以避免对环境和人类健康的影响。化学品泄漏的成功生物补救需要将分解细菌引导到污染物可能持续存在的地下深处的目标土壤微孔。小细菌可以通过孔隙流被动地平流穿过地下的可渗透区域。然而,不透水的微孔,这是普遍存在于土壤基质中,只能通过主动运动或布朗运动。这些区域往往含有大量的污染物,因为它们不容易被孔隙流冲走,从而限制了修复效果。因此,迫切需要开发一种有效的方法来将细菌分散到难以到达的空间。该提案的主要目标是通过在土壤中引入化学异质性来实现强化生物修复。核心假设是,在生物修复过程中,土壤基质内产生的化学梯度不仅可以通过趋化性(生物体响应化学刺激而通过细胞内转导的运动),而且可以通过扩散电泳(由于周围化学物质与颗粒表面之间的物理化学相互作用,胶体颗粒沿着化学梯度定向迁移)来加速细菌的运输。当满足化学和细胞表面条件时,与布朗运动相比,无论细菌类型如何,扩散电泳都可以提高细菌的运输数量级。这项调查将包括在微流体系统和实验室规模的生物修复示范土壤基质中的趋化性和扩散电泳之间的相互作用的实验表征。本研究旨在阐明细菌扩散电泳的基本方面,并证明一种有效的,低成本的战略,以提高生物修复。进一步的社会效益包括通过实践课程向本科工程专业的学生介绍微生物工程,该课程将开发为包括从细胞培养和微流体制造到实验室的各个方面。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查进行评估来支持的搜索.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape- and orientation-dependent diffusiophoresis of colloidal ellipsoids
  • DOI:
    10.1103/physreve.107.l052602
  • 发表时间:
    2023-05-18
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Doan, Viet Sang;Kim, Dong-Ook;Shin, Sangwoo
  • 通讯作者:
    Shin, Sangwoo
Directed colloidal assembly and banding via DC electrokinetics
通过直流电动学进行定向胶体组装和成带
  • DOI:
    10.1063/5.0133871
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Shin, Sangwoo
  • 通讯作者:
    Shin, Sangwoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sangwoo Shin其他文献

Rapid fabrication of leak-free, gate-all-around ionic field-effect transistor for control of ions in nanofluidic environment
快速制造无泄漏、全栅极离子场效应晶体管,用于控制纳米流体环境中的离子
The Use of Unified Message System as a Vehicle for Effective Mobile Business Communication: The Case of Morpheus Message
使用统一消息系统作为有效移动业务通信的载体:以Morpheus消息为例
Estimation of Individual Level Multi-Attribute Utility from Ordered Paired Preference Comparisons
从有序配对偏好比较估计个体水平多属性效用
Universality in the nonlinear leveling of capillary films
毛细管膜非线性流平的普遍性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Zheng;M. Fontelos;Sangwoo Shin;H. Stone
  • 通讯作者:
    H. Stone
Effect of surfactant concentration variation on the thermoelectric properties of mesoporous ZnO
表面活性剂浓度变化对介孔ZnO热电性能的影响
  • DOI:
    10.1155/2013/172504
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min;Chang;Sangwoo Shin;H. Cho;W. Seo;Y. Lim;Jung‐Kun Lee;Hyung‐Ho Park
  • 通讯作者:
    Hyung‐Ho Park

Sangwoo Shin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sangwoo Shin', 18)}}的其他基金

CAREER: Phoretic Transport of Membrane-Bound Biological Colloids in Complex Environments
职业:复杂环境中膜结合生物胶体的电泳传输
  • 批准号:
    2237177
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Continuing Grant
Colloid dynamics in porous media induced by fluid flow and solute transport
流体流动和溶质传输引起的多孔介质中的胶体动力学
  • 批准号:
    2200882
  • 财政年份:
    2021
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Colloid dynamics in porous media induced by fluid flow and solute transport
流体流动和溶质传输引起的多孔介质中的胶体动力学
  • 批准号:
    1930691
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant

相似海外基金

Genetic Manipulation of Microbial Communities via Bioaugmentation
通过生物强化对微生物群落进行基因操作
  • 批准号:
    558772-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Engineered genetic bioaugmentation vectors and pathways for bioremediation
工程遗传生物增强载体和生物修复途径
  • 批准号:
    2602516
  • 财政年份:
    2021
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Studentship
Genetic Manipulation of Microbial Communities via Bioaugmentation
通过生物强化对微生物群落进行基因操作
  • 批准号:
    558772-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bioaugmentation de la digestion in situ des boues de fosses septiques
脓毒症原位消化生物强化
  • 批准号:
    523366-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Collaborative Research: WERF: GOALI: Bioaugmentation-Enhanced Anammox for Mainstream Nitrogen Removal
合作研究:WERF:GOALI:用于主流脱氮的生物增强型厌氧氨氧化
  • 批准号:
    1705674
  • 财政年份:
    2017
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Collaborative Research: WERF: GOALI: Bioaugmentation-Enhanced Anammox for Mainstream Nitrogen Removal
合作研究:WERF:GOALI:用于主流脱氮的生物增强型厌氧氨氧化
  • 批准号:
    1705088
  • 财政年份:
    2017
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
GOALI: WERF: Bioaugmentation of activated sludge with high activity nitrifying granules/flocs: population selection, survival, biokinetics
目标:WERF:用高活性硝化颗粒/絮凝物对活性污泥进行生物强化:种群选择、生存、生物动力学
  • 批准号:
    1603707
  • 财政年份:
    2016
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
UNS: Organohalide Respiration: Improving our Understanding for Predictable Biostimulation and Bioaugmentation
UNS:有机卤化物呼吸:提高我们对可预测生物刺激和生物强化的理解
  • 批准号:
    1510131
  • 财政年份:
    2015
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Bioaugmentation as a strategy to reduce the uncertainty of biological nutrient removal in granular sludge systems
生物强化作为减少颗粒污泥系统中生物营养物去除不确定性的策略
  • 批准号:
    418385-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Discovery Grants Program - Individual
Bioaugmentation as a strategy to reduce the uncertainty of biological nutrient removal in granular sludge systems
生物强化作为减少颗粒污泥系统中生物营养物去除不确定性的策略
  • 批准号:
    418385-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了