NSF-AoF:A Bayesian Paradigm for Physics-Informed Machine Learning
NSF-AoF:物理信息机器学习的贝叶斯范式
基本信息
- 批准号:2225507
- 负责人:
- 金额:$ 58.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning algorithms have proved to be indispensable to modern industry and society. However, traditional machine learning extracts information from observational data, while ignoring the tremendous amount of information encoded into scientific laws of nature. This research concerns physics-informed machine learning, an emerging area that promises to have a profound and lasting impact in science and engineering, by coding scientific laws directly into machine learning algorithms. This dramatically reduces the data size requirement of these algorithms, and even allows them to extrapolate to domains where there is no data. This project will develop a Bayesian paradigm for physics-informed machine learning, which will include new probabilistic methods with quantified uncertainty, new computation and analysis methods, and new unsupervised algorithms. The results of this research will benefit applications in petroleum engineering, aerospace engineering, materials science, and astronomy being developed by the investigators and their collaborators. This research will develop a Bayesian paradigm for physics-informed neural networks (PINNs) and physics-informed Gaussian processes (PIGPs). The investigators will develop probabilistic solvers for nonlinear partial differential equations that leverage recent probabilistic solver methods in combination with PINN and PIGP models to solve physics-informed machine learning problems. Training dynamic analysis methods for neural networks with multi-part loss functions will be developed in order to investigate the performance of Bayesian PINNs. The investigators will study Bayesian model averaging for PINN ensembles based on traditional multiple initialization, particle swarms, and variational inference. In addition, new unsupervised methods to combine PINN and PIGP algorithms will be developed to ameliorate the issue of propagating information throughout the physical domain, which is a common failure mode of physics-informed machine learning algorithms. This work will result in Bayesian physics-informed machine learning tools for problems in oil reservoir simulation, computational fluid dynamics, phase-field modeling in microstructure informatics, and radiative transfer in supernova atmospheres, among other multidisciplinary research projects conducted by the investigators and their collaborators at the recently-established Scientific Machine Learning Laboratory of the Texas A&M Institute of Data Science (TAMIDS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法已被证明是现代工业和社会不可或缺的。然而,传统的机器学习从观测数据中提取信息,而忽略了编码为自然科学规律的大量信息。这项研究涉及物理信息机器学习,这是一个新兴领域,通过将科学定律直接编码到机器学习算法中,有望对科学和工程产生深远而持久的影响。这大大降低了这些算法的数据大小要求,甚至允许它们外推到没有数据的领域。该项目将为物理信息机器学习开发贝叶斯范式,其中包括具有量化不确定性的新概率方法,新的计算和分析方法以及新的无监督算法。这项研究的结果将有利于研究人员及其合作者正在开发的石油工程,航空航天工程,材料科学和天文学的应用。这项研究将为物理信息神经网络(PINN)和物理信息高斯过程(PIGPs)开发贝叶斯范式。研究人员将开发非线性偏微分方程的概率求解器,利用最近的概率求解器方法与PINN和PIGP模型相结合来解决物理信息机器学习问题。为了研究贝叶斯PINN的性能,将开发具有多部分损失函数的神经网络的训练动态分析方法。研究人员将研究基于传统多重初始化、粒子群和变分推理的PINN集合的贝叶斯模型平均。此外,将开发新的无监督方法来结合联合收割机PINN和PIGP算法,以改善在整个物理域中传播信息的问题,这是物理信息机器学习算法的常见故障模式。这项工作将产生贝叶斯物理学通知机器学习工具,用于油藏模拟,计算流体动力学,微结构信息学中的相场建模和超新星大气中的辐射传递等问题,以及由研究人员及其合作者在最近成立的德克萨斯州A M数据科学研究所科学机器学习实验室(TAMIDS)进行的其他多学科研究项目&。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Objective PSO-PINN
多目标PSO-PINN
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Davi, Caio;Braga-Neto, Ulisses
- 通讯作者:Braga-Neto, Ulisses
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulisses Braga Neto其他文献
Ulisses Braga Neto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulisses Braga Neto', 18)}}的其他基金
CIF:Small:Minimum Mean Square Error Estimation and Control of Partially-Observed Boolean Dynamical Systems with Applications in Metagenomics
CIF:Small:部分观测布尔动力系统的最小均方误差估计和控制及其在宏基因组学中的应用
- 批准号:
1718924 - 财政年份:2017
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
CIF: Small: Optimal Estimation and Network Inference for Boolean Dynamical Systems
CIF:小:布尔动力系统的最优估计和网络推理
- 批准号:
1320884 - 财政年份:2013
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
CAREER: Theory and Application of Small-Sample Error Estimation in Genomic Signal Processing
职业:基因组信号处理中小样本误差估计的理论与应用
- 批准号:
0845407 - 财政年份:2009
- 资助金额:
$ 58.63万 - 项目类别:
Continuing Grant
相似海外基金
NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
- 批准号:
2326599 - 财政年份:2024
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
- 批准号:
2326559 - 财政年份:2023
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
NSF-AoF: SOLID: System-wide Operation via Learning In-device Dissimilarities
NSF-AoF:SOLID:通过学习设备内差异进行系统范围的操作
- 批准号:
2225555 - 财政年份:2022
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
- 批准号:
2225576 - 财政年份:2022
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
- 批准号:
2133655 - 财政年份:2022
- 资助金额:
$ 58.63万 - 项目类别:
Standard Grant