Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control

合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础

基本信息

  • 批准号:
    2225950
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Many emerging applications, such as smart healthcare, autonomous driving, and augmented reality, rely on applying real-time Artificial Intelligence (AI) to streaming data that are constantly generated online. Edge AI, which moves AI services to the network edge close to the end users and devices where data streams are generated, is crucial for reducing latency and communication bottlenecks and enabling fast and accurate inference decisions. However, edge AI for online streaming data poses significant challenges due to the unpredictable dynamics of the streaming data and the limited computation/communication capability at the network edge. This project addresses these challenges by developing both new theoretic models that integrate sophisticated learning methods with advanced edge-network control, and practical algorithms that significantly improve the accuracy and timeliness of edge AI services for streaming data. Specifically, the project will focus on three closely-related thrusts: (i) online learning policies for model selection will be developed to quickly identify which machine-learning models should be dynamically deployed at the edge servers for best inference accuracy, while accounting for the heterogeneous switching and feedback costs; (ii) distributed online transfer learning methods will be developed to quickly retrain new machine learning models at the edge upon new streaming data; and (iii) partial-index based edge-network control policies will be developed to optimize the timeliness of interactive edge-AI services under tight resource constraints.Both edge networks and AI are considered crucial elements of next-generation wireless networks. This project will directly benefit network operators and service providers that deploy and operate edge-AI systems. Specifically, the results will help them automate the complex decision-making process required for the end-to-end orchestration of such systems, and improve the accuracy and timeliness of the edge-AI services despite the constantly-changing environments. This project will also benefit the end users of emerging applications powered by edge AI, improving their user experience and well-being. More broadly, the theories and algorithms developed in this project for learning/control co-design will not only transform edge AI, but also benefit other disciplines with similar requirements for optimization under significant dynamism and uncertainty. Finally, this project will contribute teaching and training materials to multiple undergraduate and graduate courses, and will engage women and underrepresented minority students by reaching out to local schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴应用,如智能医疗、自动驾驶和增强现实,都依赖于将实时人工智能(AI)应用于在线不断生成的流数据。边缘人工智能将人工智能服务移动到靠近最终用户和生成数据流的设备的网络边缘,对于减少延迟和通信瓶颈以及实现快速准确的推理决策至关重要。然而,由于流数据的不可预测动态和网络边缘有限的计算/通信能力,在线流数据的边缘人工智能带来了重大挑战。该项目通过开发新的理论模型来解决这些挑战,该模型将复杂的学习方法与先进的边缘网络控制相结合,并开发实用算法,显著提高流数据边缘人工智能服务的准确性和及时性。具体而言,该项目将侧重于三个密切相关的重点:(i)将开发用于模型选择的在线学习策略,以快速确定哪些机器学习模型应该动态部署在边缘服务器上以获得最佳推理准确性,同时考虑异构切换和反馈成本;(ii)分布式在线迁移学习方法将被开发出来,以便在新的流数据的边缘快速重新训练新的机器学习模型;(iii)将制定基于部分指数的边缘网络控制策略,以优化资源紧张情况下交互式边缘人工智能服务的及时性。边缘网络和人工智能都被认为是下一代无线网络的关键要素。该项目将直接使部署和操作边缘人工智能系统的网络运营商和服务提供商受益。具体来说,这些结果将帮助他们自动化这些系统端到端编排所需的复杂决策过程,并提高边缘人工智能服务的准确性和及时性,尽管环境不断变化。该项目还将使边缘人工智能驱动的新兴应用程序的最终用户受益,改善他们的用户体验和福祉。更广泛地说,本项目中开发的用于学习/控制协同设计的理论和算法不仅将改变边缘人工智能,而且还将使其他具有类似动态和不确定性优化要求的学科受益。最后,该项目将为多个本科和研究生课程提供教学和培训材料,并通过与当地学校接触,让妇女和代表性不足的少数民族学生参与进来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlie Hu其他文献

A Data Reorganization Technique for Improving Data Locality ofIrregular Applications in Software Distributed Shared MemoryY
软件分布式共享内存中提高不规则应用数据局部性的数据重组技术
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charlie Hu
  • 通讯作者:
    Charlie Hu
A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory
软件共享内存中无家可归者和基于家庭的延迟释放一致性协议的性能比较
OpenMP on Networks of Workstations
工作站网络上的 OpenMP
On the efficacy of fine-grained traffic splitting protocols in data center networks
数据中心网络中细粒度流量分流协议的功效
  • DOI:
    10.1145/2254756.2254818
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Dixit;P. Prakash;R. Kompella;Charlie Hu
  • 通讯作者:
    Charlie Hu

Charlie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlie Hu', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
  • 批准号:
    2211459
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: A Split Software Architecture for Enabling High-Quality Mixed Reality on Commodity Mobile Devices
CNS 核心:小型:用于在商用移动设备上实现高质量混合现实的分离式软件架构
  • 批准号:
    2112778
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: Integrating Real-Time Learning and Control for Large and Dynamic Networked Computer Systems
CNS 核心:小型:集成大型动态网络计算机系统的实时学习和控制
  • 批准号:
    2113893
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
  • 批准号:
    1719369
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CSR: Small: Extending Smartphone Battery Life via Prescriptive Energy Profiling
CSR:小:通过规范的能量分析延长智能手机电池寿命
  • 批准号:
    1718854
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SBIR Phase I: Enabling Techologies for Energy-Centric Mobile App Design to Extend Mobile Device Battery Life
SBIR 第一阶段:以能源为中心的移动应用程序设计支持技术,以延长移动设备的电池寿命
  • 批准号:
    1549214
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Detecting and Mitigating Smartphone Energy Bugs using Compiler and Runtime Analysis
SHF:小型:使用编译器和运行时分析检测和缓解智能手机能源错误
  • 批准号:
    1320764
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NetSE: Medium: Collaborative Research: Auditing Internet Content for Credibility, Fairness, and Privacy
NetSE:媒介:协作研究:审核互联网内容的可信度、公平性和隐私
  • 批准号:
    1065456
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS-NOSS: AIDA: Autonomous Information Dissemination in RAndomly Deployed Sensor Networks
NeTS-NOSS:AIDA:随机部署的传感器网络中的自主信息传播
  • 批准号:
    0721873
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了