CNS Core: Small: A Split Software Architecture for Enabling High-Quality Mixed Reality on Commodity Mobile Devices

CNS 核心:小型:用于在商用移动设备上实现高质量混合现实的分离式软件架构

基本信息

  • 批准号:
    2112778
  • 负责人:
  • 金额:
    $ 42.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

By blending the physical and digital worlds into a programmed experience, Mixed Reality (MR) allows users to visualize and interact with digital information such as 3D overlays and real-time data and has important applications in many societal domains including education, remote working, military training, and health care such as tele-medicine. Despite the tremendous potential of the MR technology, the MR solutions available in today’s market are either enterprise-grade which are costly or consumer-grade which can only support low-quality MR content which leads to poor user experience. The high cost and/or low-quality of current enterprise-grade and consumer-grade MR solutions lead to a fundamental “content-adoption” dilemma faced by the MR industry: the lack of MR content has limited the market penetration of custom-made MR headsets, and the low market penetration of MR headsets in turn has hindered the development of MR content. This NSF CSR project proposal will develop key technologies to enable high-quality MR on commodity mobile devices like smartphones, etc.., viewed by a simple see-through head-mount devices (HMD) with a high-resolution camera for input and a projector for output such as Nreal Light glasses. Such technologies will transform millions of smartphones (equipped with the above inexpensive HMDs) into ubiquitous MR devices and in doing so help the MR industry to overcome the “content-adoption” dilemma and pave the way for wide adoption of the MR technology and its many important applications. This project aims to create the first split software architecture that enables high-quality MR applications to run on commodity mobile devices; the capability to jointly optimize offloading multiple Deep Neural Network (DNN)-based tasks constituting a complex, resource-intensive application such as MR over the bandwidth-limited and time-varying wireless network; the capability to jointly schedule multiple DNN-based tasks of resource-intensive applications such as MR to efficiently share all local resources such as the CPU, GPU, and other processors such as NPU on emerging mobile devices; and the capability to support high-quality multi-player MR on commodity mobile devices by scaling the split software architecture across multiple mobile devices to efficiently share the limited global resources such as the wireless network and the edge cloud.The proposed research will have lasting impact on knowledge discovery, the computer industry, and the society. Technically, this work anticipates having far-reaching impacts outside the area of supporting AR/VR/MR on commodity smartphones by developing general edge-assisted software architectures for enabling the class of latency-sensitive 5G/6G applications on current and future mobile computing platforms such as smart glasses. Developing the proposed technologies for MR have the potential to fundamentally overcome the “deployment-content” dilemma faced by the industry as well as fostering the proliferation and wide adoption of MR technologies and its many societal applications. The importance of this work will be further heightened by making smartphones an important enabler of accessing information and new technologies like AR/VR/MR for people in both developed and developing countries and hence being an important tool in overcoming the “digital divide".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过将物理和数字世界融合到编程体验中,混合现实(MR)允许用户可视化数字信息并与其交互,如3D覆盖和实时数据,并在许多社会领域具有重要应用,包括教育、远程工作、军事训练和远程医疗等医疗保健。尽管MR技术具有巨大的潜力,但当今市场上可用的MR解决方案要么是成本高昂的企业级解决方案,要么是只能支持低质量MR内容的消费级解决方案,这会导致糟糕的用户体验。当前企业级和消费级MR解决方案的高成本和/或低质量导致MR行业面临一个根本性的“内容采用”困境:MR内容的缺乏限制了定制MR耳机的市场渗透率,而MR耳机的低市场渗透率反过来又阻碍了MR内容的发展。这项NSF CSR项目提案将开发关键技术,使智能手机等商用移动设备能够实现高质量的MR,通过简单的透明头戴式设备(HMD)查看,HMD具有用于输入的高分辨率摄像头和用于输出的投影仪,如NrealLight眼镜。这些技术将把数以百万计的智能手机(配备上述廉价的HMD)转变为无处不在的MR设备,从而帮助MR行业克服“内容采用”困境,并为MR技术及其许多重要应用的广泛采用铺平道路。该项目旨在创建第一个拆分式软件体系结构,使高质量的MR应用程序能够在商用移动设备上运行;能够联合优化卸载构成带宽有限和时变无线网络上的MR等复杂的资源密集型应用程序的多个基于深度神经网络(DNN)的任务;能够联合调度MR等资源密集型应用程序的多个基于DNN的任务,以高效共享新兴移动设备上的所有本地资源,如CPU、GPU和其他处理器(如NPU);以及通过跨多个移动设备扩展拆分的软件架构以高效共享有限的全球资源(如无线网络和边缘云)来支持商用移动设备上的高质量多玩家MR的能力。从技术上讲,这项工作预计将通过开发通用边缘辅助软件架构,在当前和未来的移动计算平台(如智能眼镜)上支持延迟敏感型5G/6G应用,从而在支持商用智能手机上的AR/VR/MR领域之外产生深远的影响。为MR开发拟议的技术有可能从根本上克服行业面临的“部署-内容”困境,并促进MR技术及其许多社会应用的扩散和广泛采用。这项工作的重要性将进一步提高,使智能手机成为发达国家和发展中国家人民获取信息和AR/VR/MR等新技术的重要手段,从而成为克服“数字鸿沟”的重要工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poster: BystandAR: Protecting Bystander Visual Data in Augmented Reality Systems
BystandAR: Protecting Bystander Visual Data in Augmented Reality Systems
Do Larger (More Accurate) Deep Neural Network Models Help in Edge-assisted Augmented Reality?
更大(更准确)的深度神经网络模型有助于边缘辅助增强现实吗?
An In-Depth Study of Uplink Performance of 5G mmWave Networks
5G毫米波网络上行链路性能的深入研究
  • DOI:
    10.1145/3538394.3546042
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moinak Ghoshal, Z. Jonny
  • 通讯作者:
    Moinak Ghoshal, Z. Jonny
Can 5G mmWave Support Multi-user AR?
5G毫米波能否支持多用户AR?
  • DOI:
    10.1007/978-3-030-98785-5_8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moinak Ghoshal, Pranab Dash
  • 通讯作者:
    Moinak Ghoshal, Pranab Dash
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlie Hu其他文献

A Data Reorganization Technique for Improving Data Locality ofIrregular Applications in Software Distributed Shared MemoryY
软件分布式共享内存中提高不规则应用数据局部性的数据重组技术
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charlie Hu
  • 通讯作者:
    Charlie Hu
A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory
软件共享内存中无家可归者和基于家庭的延迟释放一致性协议的性能比较
OpenMP on Networks of Workstations
工作站网络上的 OpenMP
On the efficacy of fine-grained traffic splitting protocols in data center networks
数据中心网络中细粒度流量分流协议的功效
  • DOI:
    10.1145/2254756.2254818
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Dixit;P. Prakash;R. Kompella;Charlie Hu
  • 通讯作者:
    Charlie Hu

Charlie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlie Hu', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
  • 批准号:
    2225950
  • 财政年份:
    2022
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
  • 批准号:
    2211459
  • 财政年份:
    2022
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Integrating Real-Time Learning and Control for Large and Dynamic Networked Computer Systems
CNS 核心:小型:集成大型动态网络计算机系统的实时学习和控制
  • 批准号:
    2113893
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
  • 批准号:
    1719369
  • 财政年份:
    2017
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Continuing Grant
CSR: Small: Extending Smartphone Battery Life via Prescriptive Energy Profiling
CSR:小:通过规范的能量分析延长智能手机电池寿命
  • 批准号:
    1718854
  • 财政年份:
    2017
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
SBIR Phase I: Enabling Techologies for Energy-Centric Mobile App Design to Extend Mobile Device Battery Life
SBIR 第一阶段:以能源为中心的移动应用程序设计支持技术,以延长移动设备的电池寿命
  • 批准号:
    1549214
  • 财政年份:
    2016
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
SHF: Small: Detecting and Mitigating Smartphone Energy Bugs using Compiler and Runtime Analysis
SHF:小型:使用编译器和运行时分析检测和缓解智能手机能源错误
  • 批准号:
    1320764
  • 财政年份:
    2013
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
NetSE: Medium: Collaborative Research: Auditing Internet Content for Credibility, Fairness, and Privacy
NetSE:媒介:协作研究:审核互联网内容的可信度、公平性和隐私
  • 批准号:
    1065456
  • 财政年份:
    2011
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
NeTS-NOSS: AIDA: Autonomous Information Dissemination in RAndomly Deployed Sensor Networks
NeTS-NOSS:AIDA:随机部署的传感器网络中的自主信息传播
  • 批准号:
    0721873
  • 财政年份:
    2007
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
  • 批准号:
    2233894
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
  • 批准号:
    2228028
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
  • 批准号:
    2231724
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了