CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
基本信息
- 批准号:2211459
- 负责人:
- 金额:$ 43.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Significant progress in machine learning and computer vision techniques along with growth in Internet of Things, edge computing and high-bandwidth access networks such as 5G in recent years have led to the wide adoption of video analytics systems. Such systems deploy cameras in major cities in the US and around the world to support diverse applications in surveillance, transportation, public safety, health-care, retail, and home automation. A typical video analytics system deployment consists of a video analytics pipeline (VAP), where video cameras are deployed at different locations of interest such as airports and hospitals to continuously capture video streams and transport them over the network (e.g., 5G) to the cloud servers that perform video analytics processing. As the network condition, compute resource availability, and importantly the content of the captured video frames undergo changes over time, the VAP needs to be continuously adapted in order to support resilient, high-accuracy and resource-efficient video analytics applications. The large amount of proposed VAP adaptation design in recent years ignore the built-in frame/video processing configurability of modern cameras, rely on costly offline/online profiling, and are limited to simple frame/video adaptations such as frame rate tuning and down-sampling. This project aims to develop key technologies that enable a software-defined video analytics pipeline architecture that supports resilient, high-accuracy, resource-efficient video analytics using commodity reconfigurable network cameras widely available in the market today. It will develop (1) the first software-defined VAP abstraction that instills “intelligence” into the very first stage of a video analytics pipeline, the camera itself, (2) the first software architecture that enables fully automated, real-time adaptation of VAPs by exploiting reconfigurable cameras, which has the potential to significantly improve the resilience of video analytics systems to environmental condition changes around the camera, and (3) the first capability to jointly adapt complex camera parameters to optimize the accuracy and resource usage of multiple analytics tasks that share a VAP and hence its camera capture, which lowers the cost of VAP deployment.The proposed research will have direct, practical implications to the video analytics industry and large societal impact. (1) The proposed software-defined VAP architecture will provide a much needed reference system design and implementation of high-accuracy, resource-efficient VAPs that maximally exploit the in-built frame processing capabilities of modern network cameras, and thus has the potential to foster the proliferation and wide adoption of “smart” cameras in video analytics system deployment. (2) The technologies developed for enabling resilient, high-accuracy, resource-efficient and cost-efficient VAPs will foster wide adoption of many important societal VAP applications such as transportation, entertainment, health-care, retail, automotive, home automation, safety, and security. (3) Technically, this work will have a far-reaching impact beyond the area of optimizing video analytics systems by developing general software-defined architectures for optimizing other classes of remote sensing systems and applications based on smart sensors such as LiDARs and UWB sensors. The research team will actively disseminate and transfer the technologies developed to the video analytics industry, and help organize the annual IEEE Autonomous Unmanned Aerial Vehicles (UAV) Competition for high school students world-wide.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,随着物联网、边缘计算和5G等高带宽接入网络的增长,机器学习和计算机视觉技术取得了重大进展,导致视频分析系统的广泛采用。这类系统在美国和世界各地的主要城市部署摄像头,以支持监控、交通、公共安全、医疗保健、零售和家庭自动化等领域的各种应用。典型的视频分析系统部署包括视频分析管道(VAP),视频摄像头部署在机场和医院等不同的感兴趣位置,以持续捕获视频流并通过网络(例如5G)将其传输到执行视频分析处理的云服务器。随着网络状况、计算资源可用性以及重要的是捕获的视频帧的内容随着时间的推移而发生变化,VAP需要不断调整,以支持弹性、高精度和资源高效的视频分析应用。近年来提出的大量VAP适配设计忽略了现代摄像机内置的帧/视频处理可配置性,依赖于昂贵的离线/在线剖析,并且仅限于简单的帧/视频适配,例如帧速率调谐和下采样。该项目旨在开发支持软件定义的视频分析管道架构的关键技术,该架构支持使用目前市场上广泛存在的商用可重新配置网络摄像头进行弹性、高精度、资源高效的视频分析。它将开发(1)第一个软件定义的VAP抽象,它向视频分析管道的第一个阶段--摄像机本身--注入“智能”,(2)第一个通过利用可重新配置的摄像机实现VAP的全自动、实时适应的软件体系结构,这有可能显著提高视频分析系统对摄像机周围环境条件变化的适应能力,以及(3)第一个联合调整复杂的摄像机参数以优化共享VAP的多个分析任务的准确性和资源使用的能力,从而降低VAP部署的成本。拟议的研究将具有直接、对视频分析行业的实际影响和巨大的社会影响。(1)拟议的软件定义的VAP架构将为高精度、资源效率高的VAP提供亟需的参考系统设计和实施,从而最大限度地利用现代网络摄像机的内置帧处理能力,从而有可能促进视频分析系统部署中“智能”摄像机的普及和广泛采用。(2)为实现弹性、高精度、资源效率和成本效益的VAP而开发的技术将促进许多重要的社会VAP应用的广泛采用,如交通、娱乐、医疗保健、零售、汽车、家庭自动化、安全和安保。(3)从技术上讲,这项工作将通过开发通用的软件定义的体系结构来优化其他类别的遥感系统和基于智能传感器(如激光雷达和超宽带传感器)的应用,从而对优化视频分析系统领域产生深远的影响。研究团队将积极向视频分析行业传播和转移开发的技术,并帮助在全球范围内组织一年一度的IEEE自主无人机(UAV)竞赛。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
APT: Adaptive Perceptual quality based camera Tuning using reinforcement learning
- DOI:10.1109/iotsms58070.2022.10062226
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
- 通讯作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
Why is the video analytics accuracy fluctuating, and what can we do about it?
- DOI:10.48550/arxiv.2208.12644
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
- 通讯作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning
- DOI:10.1145/3560905.3568527
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
- 通讯作者:Sibendu Paul;Kunal Rao;G. Coviello;Murugan Sankaradas;Oliver Po;Y. C. Hu;S. Chakradhar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charlie Hu其他文献
A Data Reorganization Technique for Improving Data Locality ofIrregular Applications in Software Distributed Shared MemoryY
软件分布式共享内存中提高不规则应用数据局部性的数据重组技术
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Charlie Hu - 通讯作者:
Charlie Hu
A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory
软件共享内存中无家可归者和基于家庭的延迟释放一致性协议的性能比较
- DOI:
10.1109/hpca.1999.744380 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
A. Cox;E. D. Lara;Charlie Hu;W. Zwaenepoel - 通讯作者:
W. Zwaenepoel
OpenMP on Networks of Workstations
工作站网络上的 OpenMP
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Honghui Lu;Charlie Hu;W. Zwaenepoel - 通讯作者:
W. Zwaenepoel
On the efficacy of fine-grained traffic splitting protocols in data center networks
数据中心网络中细粒度流量分流协议的功效
- DOI:
10.1145/2254756.2254818 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Dixit;P. Prakash;R. Kompella;Charlie Hu - 通讯作者:
Charlie Hu
Charlie Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charlie Hu', 18)}}的其他基金
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225950 - 财政年份:2022
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: A Split Software Architecture for Enabling High-Quality Mixed Reality on Commodity Mobile Devices
CNS 核心:小型:用于在商用移动设备上实现高质量混合现实的分离式软件架构
- 批准号:
2112778 - 财政年份:2021
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Integrating Real-Time Learning and Control for Large and Dynamic Networked Computer Systems
CNS 核心:小型:集成大型动态网络计算机系统的实时学习和控制
- 批准号:
2113893 - 财政年份:2021
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
- 批准号:
1719369 - 财政年份:2017
- 资助金额:
$ 43.81万 - 项目类别:
Continuing Grant
CSR: Small: Extending Smartphone Battery Life via Prescriptive Energy Profiling
CSR:小:通过规范的能量分析延长智能手机电池寿命
- 批准号:
1718854 - 财政年份:2017
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
SBIR Phase I: Enabling Techologies for Energy-Centric Mobile App Design to Extend Mobile Device Battery Life
SBIR 第一阶段:以能源为中心的移动应用程序设计支持技术,以延长移动设备的电池寿命
- 批准号:
1549214 - 财政年份:2016
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
SHF: Small: Detecting and Mitigating Smartphone Energy Bugs using Compiler and Runtime Analysis
SHF:小型:使用编译器和运行时分析检测和缓解智能手机能源错误
- 批准号:
1320764 - 财政年份:2013
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
NetSE: Medium: Collaborative Research: Auditing Internet Content for Credibility, Fairness, and Privacy
NetSE:媒介:协作研究:审核互联网内容的可信度、公平性和隐私
- 批准号:
1065456 - 财政年份:2011
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
NeTS-NOSS: AIDA: Autonomous Information Dissemination in RAndomly Deployed Sensor Networks
NeTS-NOSS:AIDA:随机部署的传感器网络中的自主信息传播
- 批准号:
0721873 - 财政年份:2007
- 资助金额:
$ 43.81万 - 项目类别:
Continuing Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 43.81万 - 项目类别:
Standard Grant