SitS: Wireless, sustainable, and automated sensory system for in-situ monitoring of soil heavy metals

SitS:用于土壤重金属原位监测的无线、可持续和自动化传感系统

基本信息

  • 批准号:
    2226500
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-15 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA). With the rapid growth of industrialization and urbanization, elevated levels of non-essential heavy metals in soils and irrigation water pose major threats to ecosystem health, food safety, and human and animal health, due to their toxicity, bioaccumulation, and environmental persistence. To closely monitor and manage heavy metal contaminated soils for ensuring food safety and human health, researchers at Michigan State University and Fraunhofer USA Center Midwest are collaborating to develop a novel wireless sensor platform for continuous field measurement of heavy metal concentrations in soils. In addition, the research team will integrate the research topics into diverse educational and outreach activities, including teacher training opportunities, secondary education opportunities through summer programs, and communications through various social media platforms and YouTube channels. If successful research outcomes will have a significant positive impact on soil sensing science and technology, soil quality, food safety, and public health. The overarching goal of this project is to develop an environmentally friendly, sustainable, wireless, automated microfluidic-sensor platform, capable of in-situ detection, continuous monitoring, and remote reporting of soil pH and concentrations of major heavy metal elements. Metal elements of interest include, but are not limited to, lead, mercury, cadmium, nickel, and lithium. The proposed platform will synergistically integrate several multifunctional modules in a hermetically sealed and compact package, including: 1) a self-renewable microelectrode sensor array; 2) highly-efficient microfluidics with an integrated porous ceramic filter, active mixers, and parallel fluidic channels; 3) a high-performance, eco-friendly solar energy harvester; 4) low power electronic circuitry for power management, microfluidic control, and multichannel electrochemical sensing; 5) a zero-energy Internet of Things (IoT) networking module capable of both above- and underground wireless data communication; and 6) real-time signal processing and quantification for the end-user. The prototype platform will be demonstrated in a pilot study to investigate the episodic release of metals from soil microsites that are driven by fluctuating and preferential distribution of soil water content, leading to an in-depth understanding of the dynamic behaviors of heavy metals in heterogeneous soil matrixes. The proposed platform will provide distinct advantages over existing approaches for heavy metal sensing in soils. In particular, material selection, soil sample processing, power management, and device/system packaging are carefully considered as part of the system design to achieve the best sensing performance while minimizing disturbance to soil environments. Boron-doped polycrystalline diamond as a new sensing material allows for highly sensitive and selective, long-term stable electrochemical measurements. Integration of microelectrode sensors with automated parallel microfluidics enables high-throughput, simultaneous detection of multiple analytes with minimal sample volume. Deliberately designed multi-step sample processing can reduce sample matrix complexity, provide consistent test conditions, and prevent leaching of wastewater into the soil environment. The zero-energy IoT communication enables secure and energy-efficient wireless data transmission within a large network while eliminating tethered configuration and line of sight between sensors and data aggregators. The use of a solar energy harvester as a power source is environmentally-friendly, self-sustainable, and cost-effective. Besides the significant contributions to soil sensing science and technology, this project is expected to have a great impact on engineering- and agriculture-related STEM education through integration of research with diverse educational and outreach activities, such as annual workshops, outreach publication, teacher training, K-12 summer programs, new SitS courses, social media and YouTube channels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是通过“土壤信号”征集活动获得的,该征集活动是美国国家科学基金会和美国农业部国家粮食和农业研究所(USDA NIFA)之间的合作伙伴关系。随着工业化和城市化的快速发展,土壤和灌溉水中非必需重金属水平升高,由于其毒性、生物蓄积性和环境持久性,对生态系统健康、食品安全以及人类和动物健康构成重大威胁。为了密切监测和管理重金属污染的土壤,以确保食品安全和人类健康,密歇根州立大学和弗劳恩霍夫美国中西部中心的研究人员正在合作开发一种新型无线传感器平台,用于连续现场测量土壤中的重金属浓度。此外,研究小组将把研究课题整合到不同的教育和推广活动中,包括教师培训机会、通过暑期项目进行中学教育的机会,以及通过各种社交媒体平台和YouTube频道进行交流。如果研究成果取得成功,将对土壤传感科学技术、土壤质量、食品安全和公众健康产生重大的积极影响。该项目的总体目标是开发一个环境友好、可持续、无线、自动化的微流体传感器平台,能够对土壤pH值和主要重金属元素浓度进行现场检测、连续监测和远程报告。感兴趣的金属元素包括,但不限于,铅,汞,镉,镍和锂。提出的平台将协同集成几个多功能模块在一个密封和紧凑的封装,包括:1)一个自我再生的微电极传感器阵列;2)集成了多孔陶瓷过滤器、主动混合器和平行流体通道的高效微流体;3)高性能、环保的太阳能采集器;4)用于电源管理、微流体控制和多通道电化学传感的低功耗电子电路;5)零能耗物联网(IoT)组网模块,可实现地上、地下无线数据通信;6)为终端用户进行实时信号处理和量化。该原型平台将在一项试点研究中进行演示,以调查由土壤含水量波动和优先分布驱动的土壤微站点中金属的偶发性释放,从而深入了解非均质土壤基质中重金属的动态行为。与现有的土壤重金属传感方法相比,该平台具有明显的优势。特别是,材料选择,土壤样品处理,电源管理和设备/系统封装被仔细考虑作为系统设计的一部分,以实现最佳的传感性能,同时最大限度地减少对土壤环境的干扰。掺硼多晶金刚石作为一种新型传感材料,具有高灵敏度、高选择性、长期稳定的电化学测量效果。集成微电极传感器与自动并行微流体实现高通量,同时检测多种分析物与最小的样品量。精心设计的多步骤样品处理可以降低样品基质的复杂性,提供一致的测试条件,并防止废水浸出到土壤环境中。零能耗物联网通信实现了大型网络内安全、节能的无线数据传输,同时消除了传感器和数据聚合器之间的束缚配置和视线。使用太阳能收集器作为动力源是环保的,自我可持续的,并且具有成本效益。除了对土壤传感科学和技术的重大贡献外,该项目预计将通过将研究与各种教育和推广活动(如年度研讨会、推广出版物、教师培训、K-12暑期课程、新的sit课程、社交媒体和YouTube频道)相结合,对工程和农业相关的STEM教育产生重大影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen Li其他文献

Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review
瞬时受体电位通道与慢性气道炎症性疾病:综合综述
  • DOI:
    10.1007/s00408-018-0145-3
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yang Xia;Lexin Xia;Lingyun Lou;Rui Jin;Huahao Shen;Wen Li
  • 通讯作者:
    Wen Li
Self-reductive synthesis of MXene/Na0.55Mn1.4Ti0.6O4 hybrids for high-performance symmetric lithium ion batteries
用于高性能对称锂离子电池的MXene/Na0.55Mn1.4Ti0.6O4杂化物的自还原合成
  • DOI:
    10.1039/c9ta00744j
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Guodong Zou;Bingcheng Ge;Hao Zhang;Qingrui Zhang;Carlos Fern;ez;Wen Li;Jianyu Huang;Qiuming Peng
  • 通讯作者:
    Qiuming Peng
Construction of cuproptosis-related lncRNAs/mRNAs model and prognostic prediction of hepatocellular carcinoma
铜凋亡相关lncRNAs/mRNAs模型构建及肝细胞癌预后预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingxue Tang;Tong Wang;Wen Li;Sheng Yu;Senbang Yao;Huaidong Cheng
  • 通讯作者:
    Huaidong Cheng
Implantable Parylene MEMS RF Coil for Epiretinal Prostheses
用于视网膜前假体的植入式聚对二甲苯 MEMS 射频线圈
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wen Li;D. Rodger;J. Weiland;M. Humayun;Wentai Liu;Y. Tai
  • 通讯作者:
    Y. Tai
Synthesis and antitumor activity of 7-azaindirubin
7-氮杂靛红的合成及其抗肿瘤活性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao;Wen Li;Fu Li;Lei Zhang;W. Hua;Jingcai Cheng;Qizheng Yao
  • 通讯作者:
    Qizheng Yao

Wen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen Li', 18)}}的其他基金

Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
NSF MRI: Acquisition of a Nanoscale 3D Printer for Medical Device Precision Manufacturing at Michigan State University
NSF MRI:密歇根州立大学采购用于医疗器械精密制造的纳米级 3D 打印机
  • 批准号:
    2216131
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
3D Momentum Imaging of Matrix-Assisted Laser Desorption/Ionization (MALDI) in the Time Domain
时域基质辅助激光解吸/电离 (MALDI) 的 3D 动量成像
  • 批准号:
    2107860
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Probing Multi-Electron Dynamics with Absolute Carrier-Envelope-Phase (CEP) Dependent Strong Field Interaction
利用绝对载流子包络相位 (CEP) 相关的强场相互作用探测多电子动力学
  • 批准号:
    2012098
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: Causes and Consequences of Relativistic Electron Precipitation as Revealed by the CubeSat Mission ELFIN’s Pitch-Angle Resolved Loss Cone Measurements
合作研究:立方体卫星任务 ELFIN 的俯仰角解析损耗锥测量揭示的相对论电子沉淀的原因和后果
  • 批准号:
    2019950
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Intelligent Closed-Loop Neural Interface System for Studying Mechanisms of Somatosensory Feedback in Control of Functional and Stable Locomotion
合作研究:NCS-FO:智能闭环神经接口系统,用于研究体感反馈控制功能性和稳定运动的机制
  • 批准号:
    2024270
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Exploring Mysterious Whistler Mode Waves in Earth's Plasmaspheric Plumes
职业:探索地球等离子层羽流中神秘的惠斯勒模式波
  • 批准号:
    1847818
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RET Site: Multidisciplinary Computational Solutions to Smart Sensors and Sensing Systems
RET 站点:智能传感器和传感系统的多学科计算解决方案
  • 批准号:
    1854985
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Free-Floating Wireless Implantable Optical Stimulators for Untethered Optogenetics
EAGER:实时:用于不受限制的光遗传学的自由浮动无线植入式光学刺激器
  • 批准号:
    1923187
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM: Modulation of Plasma Waves by Thermal Plasma Density Variation in the Inner Magnetosphere
合作研究:GEM:内磁层热等离子体密度变化对等离子体波的调制
  • 批准号:
    1723342
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

TRULY SUSTAINABLE PRINTED ELECTRONICS-BASED IOT COMBINING OPTICAL AND RADIO WIRELESS TECHNOLOGIES (SUPERIOT)
真正可持续的基于印刷电子的物联网,结合光学和无线电无线技术 (SUPERIOT)
  • 批准号:
    10053751
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    EU-Funded
Efficient, Sustainable and Intelligent Resource Allocation Approaches for the Next Generation of Wireless Communication Systems
下一代无线通信系统的高效、可持续和智能资源分配方法
  • 批准号:
    RGPIN-2022-05029
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Alliance Grants
Energy and spectrum opportunistic relaying for sustainable wireless networks
可持续无线网络的能量和频谱机会中继
  • 批准号:
    RGPIN-2022-04955
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Wireless power processing and location-information-free environment sensing toward sustainable smart social infrastructure
无线电力处理和无位置信息的环境传感,实现可持续的智能社会基础设施
  • 批准号:
    22H01480
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Alliance Grants
Energy-Efficient and Sustainable Approaches toward Greening the Next Generation of Wireless Communication Systems
实现下一代无线通信系统绿色化的节能且可持续的方法
  • 批准号:
    RGPIN-2016-05243
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainable, wireless asset-tracking and monitoring system for hospitals and supply-chains using self-powered sensor beacons
使用自供电传感器信标的医院和供应链可持续无线资产跟踪和监控系统
  • 批准号:
    10004572
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Small Business Research Initiative
SitS NSF-UKRI: Wireless In-Situ Soil Sensing Network for Future Sustainable Agriculture
SitS NSF-UKRI:面向未来可持续农业的无线原位土壤传感网络
  • 批准号:
    1935632
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
  • 批准号:
    528276-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了