Accelerating the discovery and development of neurotracers via high-throughput radiochemistry
通过高通量放射化学加速神经示踪剂的发现和开发
基本信息
- 批准号:10446149
- 负责人:
- 金额:$ 66.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgingAutomationBiodistributionBiologicalBiological AssayBrainChemicalsChemistryClinicalCollectionConsumptionDevelopmentDiseaseDisease ProgressionDoseEnsureEquipmentExposure toHealthImageIn SituIn VitroIndividualInfrastructureInjectionsInvestigationIsotopesLabelLeadLiquid substanceManualsMeasurementMethodsPathway interactionsPatientsPerformancePositron-Emission TomographyPreparationProcessProductionPropertyRadiation exposureRadioRadioactiveRadioactivityRadiochemistryRadioisotopesRapid screeningReactionReagentResearchResearch PersonnelSafetySamplingSensory ReceptorsSiteSpeedSystemTechnologyTimeTissuesTracerWorkbaseclinical imagingclinically relevantcostdesignexperimental studyhigh throughput technologyhuman errorimaging studyimprovedin vivoin vivo evaluationin vivo imaginginnovationnew technologynovelnovel therapeuticspre-clinicalpre-clinical researchpreclinical imagingpressureprototyperadiation detectorradiochemicalrapid techniquereceptorscale upscreeningtargeted imagingtool
项目摘要
PROJECT SUMMARY/ABSTRACT
The continuous discovery of new biological targets presents opportunities to dramatically improve our
understanding of diseases and normal function and provides new avenues for treatment. In vivo imaging of these
targets via positron-emission tomography (PET) is an especially powerful tool to understand the initiation and
progression of disease and to aid in the development of novel therapeutics. The major benefits of PET are the
very high sensitivity (enabling imaging of rare targets such as neuroreceptors without saturating them), and the
ability to image deep tissues (which provides translatability from preclinical research to later clinical use).
But the development of useful and validated tracers can take years or decades. A significant limiting factor is the
complexity and cost of radiochemistry, and the difficulty in using current technologies to optimize synthesis
conditions – a key step toward achieving reliable production with sufficient yield to support initial imaging studies.
Slow throughput and high reagent and isotope consumption mean that optimization studies are very expensive
and time-consuming, and thus such studies tend to be very limited and are unlikely to find globally optimal
conditions. These limitations also create pressures in other aspects of new probe development, e.g., significant
efforts are made to reduce the number of “hits” so only a very small number of compounds are labeled and
studied via in vitro and ex vivo assays and in vivo imaging. However, this selection process is imperfect as it
sometimes leads to the pursuit of dead-ends while it excludes promising candidates.
To more rapidly leverage preclinical and clinical imaging of new biological targets, the radiochemistry field is in
urgent need of new tools to improve the tracer discovery and development process. Our proposed solution is
the development of high-throughput radiochemistry methods. Arrays of droplet reactions have recently been
introduced as a way to rapidly perform dozens of reactions in parallel from a single batch of radioisotope, with
total reagent consumption of those reactions similar to a single batch on a conventional system. Furthermore,
the droplet reactions can readily be scaled to quantities for preclinical or even clinical imaging. These methods
could be used to efficiently explore a vast reaction parameter space in a matter of days (instead of weeks to
months), or they could be used to label dozens of candidate compounds in parallel to perform screening based
on the most relevant metric: in vivo properties. While these reaction arrays, operated using manual pipetting,
have revealed the benefits and potential of high-throughput radiochemistry, this new technology requires
significant further development and automation to increase safety and speed, and reduce the chance for human
error. We propose to (1) integrate in situ radiation detectors to quantify the radioactivity at various stages of each
reaction, (2) integrate a method to automatically sample the reactions for analysis (radio-TLC or radio-UPLC),
and (3) use high-throughput methods to optimize the synthesis of 5 neurotracers that currently have low yield,
develop at least one novel tracer, and develop best practices for high-throughput optimization in radiochemistry.
项目摘要/摘要
新生物靶点的不断发现为显着改善我们的能力提供了机会
了解疾病和正常功能,并提供新的治疗途径。在体内成像这些
通过正电子发射断层扫描(PET)的靶点是一个特别强大的工具,以了解启动和
疾病的进展,并帮助开发新的治疗方法。PET的主要优点是
非常高的灵敏度(能够成像罕见的目标,如神经受体,而不会使它们饱和),
能够对深部组织进行成像(提供从临床前研究到后期临床使用的可转换性)。
但是,开发有用和有效的示踪剂可能需要数年或数十年的时间。一个重要的限制因素是
放射化学的复杂性和成本,以及使用现有技术优化合成的困难
这是实现可靠生产的关键一步,有足够的产量来支持初始成像研究。
低通量和高试剂和同位素消耗意味着优化研究非常昂贵
并且耗时,因此此类研究往往非常有限,不太可能找到全局最优的
条件这些限制也在新探针开发的其他方面产生压力,例如,显著
努力减少“命中”的数量,因此只有非常少量的化合物被标记,
通过体外和离体测定以及体内成像进行研究。然而,这个选择过程是不完美的,因为它
有时会导致走上死胡同,同时排除有前途的候选人。
为了更快速地利用新生物靶点的临床前和临床成像,放射化学领域正在发展。
迫切需要新的工具来改进示踪剂的发现和开发过程。我们提出的解决方案是
高通量放射化学方法的发展。最近,
作为一种从一批放射性同位素中快速并行执行数十个反应的方法,
这些反应的总试剂消耗类似于常规系统上的单个批次。此外,委员会认为,
液滴反应可以容易地按比例缩放到临床前或甚至临床成像的量。这些方法
可以用于在几天内有效地探索巨大的反应参数空间(而不是几周,
几个月),或者它们可以用于并行标记数十种候选化合物,以进行基于
最相关的指标:体内特性。虽然这些反应阵列使用手动移液操作,
揭示了高通量放射化学的好处和潜力,这项新技术需要
重大的进一步发展和自动化,以提高安全性和速度,并减少人类的机会,
错误.我们建议(1)整合原位辐射探测器,以量化每个阶段的放射性
反应,(2)集成一种方法,自动对反应进行采样以进行分析(放射性TLC或放射性UPLC),
和(3)使用高通量方法优化目前产率低的5种神经示踪剂的合成,
开发至少一种新型示踪剂,并开发放射化学高通量优化的最佳实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARION Xenofon CHATZIIOANNOU其他文献
ARION Xenofon CHATZIIOANNOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARION Xenofon CHATZIIOANNOU', 18)}}的其他基金
Accelerating the discovery and development of neurotracers via high-throughput radiochemistry
通过高通量放射化学加速神经示踪剂的发现和开发
- 批准号:
10636867 - 财政年份:2022
- 资助金额:
$ 66.3万 - 项目类别:
A Novel Detector for Combined Optical and PET Imaging
用于组合光学和 PET 成像的新型探测器
- 批准号:
6874408 - 财政年份:2004
- 资助金额:
$ 66.3万 - 项目类别:
A Novel Detector for Combined Optical and PET Imaging
用于组合光学和 PET 成像的新型探测器
- 批准号:
7006679 - 财政年份:2004
- 资助金额:
$ 66.3万 - 项目类别:
A Novel Detector for Combined Optical and PET Imaging
用于组合光学和 PET 成像的新型探测器
- 批准号:
7162623 - 财政年份:2004
- 资助金额:
$ 66.3万 - 项目类别:
A Novel Detector for Combined Optical and PET Imaging
用于组合光学和 PET 成像的新型探测器
- 批准号:
6776648 - 财政年份:2004
- 资助金额:
$ 66.3万 - 项目类别:
The UCLA Imaging Resource for Mouse Cancer Models
加州大学洛杉矶分校小鼠癌症模型成像资源
- 批准号:
7758307 - 财政年份:2001
- 资助金额:
$ 66.3万 - 项目类别:
The UCLA Imaging Resource for Mouse Cancer Models
加州大学洛杉矶分校小鼠癌症模型成像资源
- 批准号:
7235085 - 财政年份:2001
- 资助金额:
$ 66.3万 - 项目类别:
The UCLA Imaging Resource for Mouse Cancer Models
加州大学洛杉矶分校小鼠癌症模型成像资源
- 批准号:
7563918 - 财政年份:2001
- 资助金额:
$ 66.3万 - 项目类别:
The UCLA Imaging Resource for Mouse Cancer Models
加州大学洛杉矶分校小鼠癌症模型成像资源
- 批准号:
8020092 - 财政年份:2001
- 资助金额:
$ 66.3万 - 项目类别:
The UCLA Imaging Resource for Mouse Cancer Models
加州大学洛杉矶分校小鼠癌症模型成像资源
- 批准号:
7361382 - 财政年份:2001
- 资助金额:
$ 66.3万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 66.3万 - 项目类别:
Collaborative R&D