MFB: Novel Graph Neural Networks to Understand, Predict, and Design Allosteric Transcription Factors

MFB:用于理解、预测和设计变构转录因子的新型图神经网络

基本信息

  • 批准号:
    2226663
  • 负责人:
  • 金额:
    $ 148.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In this Molecular Foundations for Biotechnology (MFB) project, Professors Corey J. Wilson, Matthew J. Realff, and Yao Xie at the Georgia Institute of Technology are leveraging both novel experimental and machine learning strategies to understand, predict, and design allosteric communication in a family of proteins called transcription factors that regulate gene expression in living systems. Protein allostery is an important protein function which enables communication between different parts of a functional protein that are widely separated. Our lack of understanding of the mechanism of allostery prevents scientist and engineers from designing this critically important function. By combining the tools of molecular biology and artificial intelligence, this project aims to decipher structure/activity patterns for naturally occurring and engineered transcription factors at the molecular level, specifically at the level of individual amino acids. Understanding the rules that govern allosteric communication would, in principle, enable investigators to design new transcription factors for a variety of high-impact applications such as manipulating the composition of bacteria in the gut. This project involves a blend of biochemistry, biophysics, engineering, and machine learning approaches that will facilitate student engagement across traditional disciplinary boundaries. In addition to diverse student involvement, the broader impacts of this project will include the development of innovative pedagogical modules in the areas of machine learning and biological engineering. This project will contribute to the development of a diverse and engaged STEM (science, technology, engineering and mathematics) workforce, building a firm foundation for a lifetime of contributions to research, education, and their integration. Protein allostery is a vitally important protein function that has proven to be a vexing problem to understand at the molecular level. The goal of this project is to decipher the underlying molecular mechanisms by which the allosteric signal traverses the scaffold across several naturally occurring and engineer transcription factors with alternate allosteric controls from the broader LacI/GalR family of protein homologues. In general, allosteric communication involves networks of non-neighboring amino acid positions; therefore, traditional pairwise computational approaches (e.g., molecular mechanics simulations, and related computer-aided protein design strategies) are of limited use in understanding and designing allosteric networks a priori. Accordingly, this project seeks to develop novel machine learning approaches and complementary experimental strategies to accelerate scientific progress and transform the nature of studying and designing allosteric communication. This project has the potential to lead to a paradigm shift with regard to the origins and construction (design) of allosteric networks in a single fold. Moreover, the machine learning approaches developed in this project can in principle be applied to other complex network problems beyond the designated protein systems – e.g., distillation column sequences, communication systems, and power grid systems.This project is jointly supported by the Division of Chemistry, the Division of Chemical, Bioengineering, Environmental and Transport Systems, and the Division of Information and Intelligent Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个生物技术分子基础(MFB)项目中,格鲁吉亚理工学院的Corey J. Wilson,Matthew J. Realff和Yao Xie教授正在利用新的实验和机器学习策略来理解,预测和设计一个称为转录因子的蛋白质家族中的变构通信,这些转录因子调节生命系统中的基因表达。 蛋白质变构是一种重要的蛋白质功能,它使功能蛋白质的不同部分之间的通信,广泛分离。我们对变构机制的缺乏了解,阻碍了科学家和工程师设计这一至关重要的功能。 通过结合分子生物学和人工智能的工具,该项目旨在在分子水平上,特别是在单个氨基酸水平上,破译天然存在和工程改造的转录因子的结构/活性模式。原则上,了解控制变构通讯的规则将使研究人员能够为各种高影响力的应用设计新的转录因子,例如操纵肠道中细菌的组成。该项目涉及生物化学,生物物理学,工程学和机器学习方法的融合,将促进学生跨越传统学科界限的参与。除了多样化的学生参与外,该项目的更广泛影响将包括在机器学习和生物工程领域开发创新的教学模块。该项目将有助于发展多元化和参与STEM(科学,技术,工程和数学)的劳动力,为研究,教育及其整合的终身贡献奠定坚实的基础。蛋白质变构是一种非常重要的蛋白质功能,已被证明是一个棘手的问题,以了解在分子水平上。该项目的目标是破译潜在的分子机制,通过该机制,变构信号穿过几个天然存在的支架,并利用来自更广泛的LacI/GalR蛋白质同系物家族的替代变构控制来设计转录因子。一般而言,变构通信涉及非相邻氨基酸位置的网络;因此,传统的成对计算方法(例如,分子力学模拟和相关的计算机辅助蛋白质设计策略)在先验地理解和设计变构网络中的用途有限。因此,该项目旨在开发新的机器学习方法和补充实验策略,以加速科学进步,改变研究和设计变构通信的性质。这个项目有可能导致一个范式转变的起源和建设(设计)的变构网络在一个单一的倍。此外,该项目中开发的机器学习方法原则上可以应用于指定蛋白质系统之外的其他复杂网络问题-例如,蒸馏塔序列,通信系统和电网系统。该项目由化学部,化学,生物工程,环境和运输系统部以及信息和智能系统部共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Wilson其他文献

Evaporation Heat Transfer in Thin-Film Region With Bulk Vapor Flow Effect
具有整体蒸汽流效应的薄膜区域蒸发传热
ADAPTIVE REUSE of INDUSTRIAL BUILDINGS in TORONTO, ONTARIO Evaluating Criteria for Determining Building Selection
  • DOI:
  • 发表时间:
    2010-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corey Wilson
  • 通讯作者:
    Corey Wilson
Experimental investigation of nanofluid oscillating heat pipes
纳米流体振荡热管的实验研究
  • DOI:
    10.32469/10355/4553
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corey Wilson
  • 通讯作者:
    Corey Wilson

Corey Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Wilson', 18)}}的其他基金

URoL:ASC: Next-Generation Biological Security and Bio-Hackathon
URoL:ASC:下一代生物安全和生物黑客马拉松
  • 批准号:
    2319231
  • 财政年份:
    2023
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
Engineering Intelligent Chassis Cells
工程智能底盘单元
  • 批准号:
    2123855
  • 财政年份:
    2021
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
GCR: Biomolecular Systems Engineering - Unlocking the Potential of Biological Programming
GCR:生物分子系统工程 - 释放生物编程的潜力
  • 批准号:
    1934836
  • 财政年份:
    2019
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Continuing Grant
Examination and Reconstruction of Alternate Allosteric Networks in Engineered LacI/GalR Transcription Factors
工程 LacI/GalR 转录因子中替代变构网络的检查和重建
  • 批准号:
    1921061
  • 财政年份:
    2019
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
Engineering Advanced Logical Operations for Gene Control
基因控制的工程高级逻辑运算
  • 批准号:
    1804639
  • 财政年份:
    2018
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
RoL:EAGER:DESYN-C3: Engineering Microbial Differentiation
RoL:EAGER:DESYN-C3:工程微生物分化
  • 批准号:
    1844289
  • 财政年份:
    2018
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
EAGER: Examining the Origins and Molecular Pathways of Alternate Allosteric Networks in the Lacl System
EAGER:检查 Lacl 系统中替代变构网络的起源和分子途径
  • 批准号:
    1747439
  • 财政年份:
    2017
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
Controlling the flow of energy transduction through a protein medium via rational design
通过合理设计控制蛋白质介质中的能量转导流程
  • 批准号:
    1723613
  • 财政年份:
    2016
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Continuing Grant
Controlling the flow of energy transduction through a protein medium via rational design
通过合理设计控制蛋白质介质中的能量转导流程
  • 批准号:
    1507385
  • 财政年份:
    2015
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Continuing Grant
EAGER: Engineering Biological Electronic Coupling Pathways
EAGER:工程生物电子耦合途径
  • 批准号:
    1114846
  • 财政年份:
    2011
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
Developing a knowledge inference and reasoning engine to extract meaningful insights from unstructured data using a novel neighbourhood graph approach
开发知识推理和推理引擎,使用新颖的邻域图方法从非结构化数据中提取有意义的见解
  • 批准号:
    10027139
  • 财政年份:
    2022
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Collaborative R&D
Developing, Applying, and Explaining Graph Convolutional Neural Networks in the Context of Genome Wide Association Analyses to Increase Attention Deficit/Hyperactivity Disorder Prediction Accuracy, Extract Novel Genomic Networks Associated With Attention
在全基因组关联分析的背景下开发、应用和解释图卷积神经网络,以提高注意力缺陷/多动症预测准确性,提取与注意力相关的新型基因组网络
  • 批准号:
    457223
  • 财政年份:
    2021
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Studentship Programs
A novel interpolation method for non-uniformed sampling data of nuclear magnetic resonance spectroscopy based on graph signal processing
基于图信号处理的核磁共振波谱非均匀采样数据插值新方法
  • 批准号:
    20K23331
  • 财政年份:
    2020
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Analysis of quiver gauge theory via graph theory and search for a novel space-time picture
用图论分析箭袋规范理论并寻找新颖的时空图景
  • 批准号:
    17K05422
  • 财政年份:
    2017
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Graph Processing Architecture to Ascertain & Monitor Care Coordination
需要确定的新型图形处理架构
  • 批准号:
    8753355
  • 财政年份:
    2014
  • 资助金额:
    $ 148.59万
  • 项目类别:
Doctoral Dissertation Research: Novel Graph Models for Studying Mobilization
博士论文研究:研究动员的新颖图模型
  • 批准号:
    1435138
  • 财政年份:
    2014
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Standard Grant
A Novel Graph Processing Architecture to Ascertain & Monitor Care Coordination
需要确定的新型图形处理架构
  • 批准号:
    9113071
  • 财政年份:
    2014
  • 资助金额:
    $ 148.59万
  • 项目类别:
CAREER: A novel framework for mining graph patterns in large biological and social networks
职业:在大型生物和社交网络中挖掘图形模式的新颖框架
  • 批准号:
    1149851
  • 财政年份:
    2012
  • 资助金额:
    $ 148.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了