Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
基本信息
- 批准号:2219904
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In algorithmic threat detection, understanding the interactions of multivariate time series is crucial. Graph neural networks (GNNs) with attention mechanisms have proven effective in learning and predicting such time series. This project aims to investigate GNNs for improved acceleration and accuracy. The research will have broad applicability in fields such as Artificial Intelligence (AI), traffic analysis, power systems, and health analytics. The project will provide training opportunities and promote STEM education for underrepresented students.The project aims to address three key challenges in threat detection within multivariate time series: 1) maintaining accuracy with deep GNNs, 2) training GNNs with limited data, and 3) reducing computational costs in training and deploying deep GNNs with attention layers. The research advances continuous-depth GNNs and efficient attention algorithms based on the partial differential equation (PDE) theory. By leveraging the continuous viewpoint of GNNs, the project aims to develop theoretically-grounded and computationally efficient algorithms for accurate graph deep learning with limited supervision. The project will focus on three research thrusts: Thrust A: Bridging diffusion equation theory and GNN architecture design to develop a new class of GNNs based on diffusion equations on graphs. These GNNs overcome over-smoothing and reliably learn and predict with limited supervision. Thrust B: Developing fast algorithms for GNN and attention training, testing, and inference. Thrust C: Application of the new algorithms to anomaly detection and software development, specifically in benchmark graph learning tasks and anomaly detection in traffic flow, power distribution, and epidemic data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在算法威胁检测中,了解多变量时间序列的相互作用至关重要。具有注意力机制的图神经网络(GNN)已被证明在学习和预测此类时间序列方面是有效的。该项目旨在研究GNN以提高加速和准确性。该研究将在人工智能(AI),交通分析,电力系统和健康分析等领域具有广泛的适用性。该项目旨在解决多变量时间序列中威胁检测的三个关键挑战:1)保持深度GNN的准确性,2)用有限的数据训练GNN,3)降低训练和部署具有注意力层的深度GNN的计算成本。研究提出了基于偏微分方程(PDE)理论的连续深度GNNs和有效的注意力算法。通过利用GNN的连续观点,该项目旨在开发理论基础和计算效率高的算法,用于在有限监督下进行精确的图深度学习。该项目将侧重于三个研究方向:方向A:桥接扩散方程理论和GNN架构设计,以开发一类基于图上扩散方程的新GNN。这些GNN克服了过度平滑,并在有限的监督下可靠地学习和预测。目标B:为GNN和注意力训练、测试和推理开发快速算法。推力C:新算法在异常检测和软件开发中的应用,特别是在基准图学习任务和交通流量、配电和流行病数据的异常检测中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Xin其他文献
A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
- DOI:
10.48550/arxiv.2405.19003 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang - 通讯作者:
Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.5
- 作者:
沈丽华;Jack Xin;周爱辉 - 通讯作者:
周爱辉
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fanghui Xue;Jack Xin - 通讯作者:
Jack Xin
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Warren;P. Prakash;D. Thompson;B. Natarajan;Charles Carlson;Kim Fowler;Edwin Brokesh;Jack Xin;W. Piersel;Janine Kesterson;Steve Stoffregen - 通讯作者:
Steve Stoffregen
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
- DOI:
10.1007/s10915-017-0578-5 - 发表时间:
2017-10-20 - 期刊:
- 影响因子:3.300
- 作者:
Xiaolong Long;Knut Solna;Jack Xin - 通讯作者:
Jack Xin
Jack Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Xin', 18)}}的其他基金
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
- 批准号:
2151235 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952644 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
- 批准号:
1854434 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924548 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
- 批准号:
1632935 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
- 批准号:
1522383 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
- 批准号:
1211179 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
- 批准号:
1222507 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
- 批准号:
0911277 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
- 批准号:
2317397 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant