Scanning tunneling microscopy and -spectroscopy of GaP layers on Si(001)

Si(001) 上 GaP 层的扫描隧道显微镜和光谱学

基本信息

  • 批准号:
    252528669
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Gallium phosphide based materials on silicon(001) substrates are promising for the integration of optoelectronic devices with the well-established silicon technology. The advantage of gallium phosphide compared with other III-V semiconductor materials is the low lattice mismatch to silicon. However, the growth of polar semiconductors on non-polar substrates results in the formation of domains with different polarities, which are separated by antiphase boundaries. An antiphase boundary is a stacking fault, which leads to neighboring atoms with the identical electron configuration. Thus, within gallium phosphide, phosphorous or gallium double bonds are formed, which are charged defects proceeding two-dimensionally within the crystal. Hence, the antiphase boundaries act as nonradiative recombination centers and lead to efficiency losses of the resulting devices. In the present project the structural and electronic properties of the antiphase boundaries and their influence on nano-structured samples shall be investigated using cross-sectional scanning tunneling microscopy and spectroscopy. In particular the GaP/Si(001) interface shall be imaged on the atomic scale and studied with respect to decomposition or segregation effects. The goal of those investigations is to achieve a physical understanding of the growth processes at the GaP/Si(001) interface as well as of the structural and electronical properties of defects within the gallium-phosphide layer. The results shall pave the way to avoid or to systematically annihilate the antiphase boundaries in order to increase the quality of the resulting GaP/Si(001) layer and the semiconductor structures grown on top.
基于磷化镓的硅(001)衬底材料有望用于光电器件与成熟的硅技术的集成。与其他III-V族半导体材料相比,磷化镓的优点是与硅的晶格失配低。然而,极性半导体在非极性衬底上的生长导致具有不同极性的畴的形成,这些畴被反相边界分开。反相边界是堆垛层错,它导致相邻原子具有相同的电子构型。 因此,在磷化镓内,形成磷或镓双键,其是在晶体内二维进行的带电缺陷。因此,反相边界作为非辐射复合中心,并导致所得器件的效率损失。在本项目中,反相边界的结构和电子特性及其对纳米结构样品的影响将使用截面扫描隧道显微镜和光谱学进行研究。特别差距/Si(001)界面应在原子尺度上成像,并研究分解或偏析效应。这些调查的目的是实现在差距/Si(001)界面的生长过程,以及在磷化镓层内的缺陷的结构和电子特性的物理理解。结果将为避免或系统地消除反相边界铺平道路,以提高所得GaP/Si(001)层和在其上生长的半导体结构的质量。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional structure of antiphase domains in GaP on Si(0 0 1)
Si(0â0â1)上GaP反相畴的三维结构
  • DOI:
    10.1088/1361-648x/aafcfb
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Farin ;M. Marquardt;W. Martyanov;J. Belz;A. Beyer;K. Volz;A. Lenz
  • 通讯作者:
    A. Lenz
Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate
  • DOI:
    10.1063/1.4945598
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    C. S. Schulze;Xue Huang;Christopher Prohl;V. Füllert;S. Rybank;S. Maddox;S. March;S. Bank;M. Lee;A. Lenz
  • 通讯作者:
    C. S. Schulze;Xue Huang;Christopher Prohl;V. Füllert;S. Rybank;S. Maddox;S. March;S. Bank;M. Lee;A. Lenz
Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)
Si(001) 上外延生长的 GaP 层反相边界的横截面扫描隧道显微镜
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Andrea Lenz其他文献

Dr. Andrea Lenz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

神经细胞间的纳米连接和物质转运在老年性痴呆症中的作用
  • 批准号:
    91132718
  • 批准年份:
    2011
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Implementation of Hyperdimensional Scanning Tunneling Microscopy
超维扫描隧道显微镜的设计与实现
  • 批准号:
    2303936
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Probing Local Structural and Chemical Properties of Atomically Thin Two-Dimensional Materials by Optical Scanning Tunneling Microscopy
通过光学扫描隧道显微镜探测原子薄二维材料的局部结构和化学性质
  • 批准号:
    2211474
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Detection of ferromagnetic resonance and control of magnetization by spin-resolved scanning tunneling microscopy
自旋分辨扫描隧道显微镜检测铁磁共振和磁化控制
  • 批准号:
    22K14598
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
  • 批准号:
    22K18696
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Scanning tunneling microscopy studies of the on-surface synthesis of molecular based nanomaterials
分子纳米材料表面合成的扫描隧道显微镜研究
  • 批准号:
    DDG-2021-00011
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Development Grant
Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Role of electrochemical activity and electronic structure studied using a scanning tunneling microscopy approach
使用扫描隧道显微镜方法研究电化学活性和电子结构的作用
  • 批准号:
    21K14595
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scanning tunneling microscopy studies of the on-surface synthesis of molecular based nanomaterials
分子纳米材料表面合成的扫描隧道显微镜研究
  • 批准号:
    DDG-2021-00011
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Development Grant
Ultrafast terahertz scanning tunneling microscopy of superconductors
超导体超快太赫兹扫描隧道显微镜
  • 批准号:
    554033-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Exploring ultrafast non-equilibrium superconductivity dynamics in Bi-2212 single crystals with terahertz scanning tunneling microscopy
利用太赫兹扫描隧道显微镜探索 Bi-2212 单晶中的超快非平衡超导动力学
  • 批准号:
    554112-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了