Collaborative Research: Enhanced Biogeochemical Flushing of Uranium in Groundwater

合作研究:地下水中铀的强化生物地球化学冲洗

基本信息

  • 批准号:
    2229869
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Approximately 115 million people in the United States use groundwater as source of drinking water. Many groundwater aquifers are contaminated with uranium from both natural and anthropogenic sources. Prior to its usage as source of drinking water, uranium contaminated groundwater needs to be treated to achieve a target concentration below the EPA MCL (Maximum Concentration Limit) of 30 micrograms per liter (µg/L). In-situ immobilization is currently the leading remediation technology for uranium-contaminated aquifers. This approach relies on the manipulation of the redox biogeochemistry of uranium to reduce and convert mobile uranyl [U(VI)] ions to the mineral uraninite (UO2) which is generally considered immobile in uranium-contaminated aquifers. However, uraninite is highly susceptible to re-oxidation and re-mobilization by oxidants such as oxygen, thus limiting the efficacy of in-situ immobilization as a remediation technology. The goal of this project is to investigate the enhanced biogeochemical mobilization and flushing of uranium from contaminated aquifers as an alternative remediation technology. To advance this goal, the Principal Investigators (PIs) propose to carry out an integrated research program with field, laboratory, and modeling studies to characterize and unravel the biogeochemical reactions and microbial processes that control uranium mobilization in contaminated aquifers. The successful completion of this research will benefit society through the generation of new fundamental knowledge, data and validated models to advance the design and implementation of more efficient and cost-effective remediation technologies for uranium contaminated aquifers. Additional benefits to society will be accomplished through education and outreach including the mentoring of one graduate student and one post-doctoral scholar at the University of Wisconsin-Milwaukee and one graduate student at the University of Wisconsin-Madison.The remediation of uranium-contaminated aquifers has been largely focused on immobilizing uranium by stimulating the abiotic and biotic processes and reactions that control the reduction and conversion of soluble and mobile uranyl [U(VI)] ions to stable and immobile uraninite minerals. However, in situ immobilization has limited effectiveness and the estimated times to naturally flush uranium to below the EPA MCL often exceed hundreds of years. The overarching goal of this research is to understand how to better tune and manipulate the biogeochemical processes and reactions that control the mobility of uranium in contaminated aquifers with the aim of enhancing uranium mobilization and flushing from these aquifers through the injection of oxygen and bicarbonate enriched surface water. The specific objectives of the research are to: 1) Characterize and unravel the biogeochemical mechanisms of uranium mobilization using geochemical modeling and available thermodynamic and kinetic reaction data, 2) Conduct laboratory experiments to investigate the effect of microbial activity on the mobility of uranium under oxygen- and carbonate-rich conditions, and 3) Determine flow and reactive transport parameters to support the implementation and validation of a uranium transport/mobilization model using finite difference numerical modeling and available uranium mobilization data from single-well tracer experiments. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge and modeling tools to advance the design and implementation of in-situ enhanced mobilization and flushing as an alternative remediation technology for uranium contaminated aquifers. To implement the educational and outreach goals of this project, the Principal Investigators (PIs) propose to integrate the findings from this research into an existing course at the University of Wisconsin-Madison. In addition, the PIs plan to leverage existing programs at their respective institutions to design and build an exhibition panel on metal contamination in groundwater and aquifers in Wisconsin that will be displayed at the Northern Great Lakes Visitor Center for viewing by Summer 2024.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国大约有1.15亿人使用地下水作为饮用水来源。许多地下蓄水层受到自然和人为来源的铀污染。在将铀污染的地下水作为饮用水源之前,需要对其进行处理,使其达到低于EPA MCL(最大浓度限值)30微克/升的目标浓度。原位固定化是目前铀污染含水层的主要修复技术。这种方法依赖于对铀的氧化还原生物地球化学的操纵,将可移动的铀酰[U(VI)]离子还原并转化为矿物铀铀矿(UO2), UO2通常被认为在铀污染的含水层中是不可移动的。然而,铀矿石极易被氧等氧化剂再氧化和再动员,从而限制了原位固定化作为一种修复技术的效果。该项目的目的是研究加强生物地球化学动员和从受污染的含水层冲洗铀作为一种替代修复技术。为了推进这一目标,首席研究人员(pi)建议开展一项综合研究计划,包括实地、实验室和建模研究,以表征和揭示控制受污染含水层中铀动员的生物地球化学反应和微生物过程。这项研究的成功完成将通过产生新的基础知识、数据和经过验证的模型来促进设计和实施更有效和更具成本效益的铀污染含水层修复技术,从而造福社会。对社会的额外好处将通过教育和外展来实现,包括指导威斯康星大学密尔沃基分校的一名研究生和一名博士后学者,以及威斯康星大学麦迪逊分校的一名研究生。铀污染含水层的修复主要集中在通过刺激控制可溶性和可移动的铀酰[U(VI)]离子还原和转化为稳定和不可移动的铀矿物的非生物和生物过程和反应来固定化铀。然而,原位固定化的效果有限,自然冲洗铀至低于EPA MCL的估计时间往往超过数百年。本研究的总体目标是了解如何更好地调节和操纵控制受污染含水层中铀流动性的生物地球化学过程和反应,目的是通过注入氧气和富含碳酸氢盐的地表水来增强铀的动员和从这些含水层中冲洗出来。研究的具体目标是:1)利用地球化学模型和现有的热力学和动力学反应数据,表征和揭示铀动员的生物地球化学机制;2)开展实验室实验,研究富氧和富碳酸盐条件下微生物活动对铀迁移的影响;3)确定流动和反应输运参数,以支持使用有限差分数值模拟和单井示踪剂实验中可用的铀动员数据的铀输运/动员模型的实施和验证。该项目的成功完成有可能产生变革性的影响,因为它产生了基础知识和建模工具,以推进就地强化动员和冲洗的设计和实施,作为铀污染含水层的替代修复技术。为了实现这个项目的教育和推广目标,主要研究人员(pi)建议将这项研究的结果整合到威斯康星大学麦迪逊分校的现有课程中。此外,pi计划利用各自机构的现有项目设计和建造一个关于威斯康星州地下水和含水层金属污染的展板,该展板将于2024年夏季在北五大湖游客中心展出,供游客观赏。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Paradis其他文献

Charles Paradis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
  • 批准号:
    2319568
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334994
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334995
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了