RAISE: IHBEM: Behavioral Heterogeneity and Uncertainty in Epidemiological Models

RAISE:IHBEM:流行病学模型中的行为异质性和不确定性

基本信息

  • 批准号:
    2230023
  • 负责人:
  • 金额:
    $ 99.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

In this project, existing epidemiological models are developed further to address two fundamental challenges: heterogeneity and uncertainty. Epidemiological models are mathematical and computational tools that can help guide public-health decisions to mitigate morbidity, mortality, and economic impacts of communicable diseases. Their effectiveness could be further improved by addressing two issues. First, people differ from one another in their perceptions of risk, social network size, number of contacts per day, willingness to engage with public-health measures, and in their receptivity to mis- and dis-information. This heterogeneity is a major challenge in accurately characterizing human behavior that is central to ensuring prediction accuracy in epidemiological models. Second, uncertainty pervades all epidemiological modeling. All models rely on input parameters, such as the fraction of infections that are asymptomatic, that cannot be known with certainty, yet model predictions can vary dramatically as the unknown parameters vary over plausible ranges. Ignoring this intrinsic uncertainty in key input parameters can lead to overly confident predictions of models and, in turn, to poor decisions that do not consider an appropriate range of potential outcomes. This model development is carried out working with organizations of public health officials at state and federal levels to ensure relevance and practicality. This project is funded jointly by the Division of Mathematical Sciences (DMS) in the Directorate of Mathematical and Physical Sciences (MPS) and the Division of Social and Economic Sciences (SES) in the Directorate of Social, Behavioral, and Economic Sciences (SBE).In this project, a range of statistical and machine-learning methods are employed on publicly available data sets to fit parametric and non-parametric models of human behaviors relevant to epidemiological models. Advanced techniques are developed and used to elicit human behavior from contact-tracing data, adjusting for the missing data and selection bias that is inherent in such data. The resulting analyses provide input into optimization methods that are designed to optimize policy interventions while explicitly accounting for heterogeneity and uncertainty. Tailored optimization methods optimize over both short time scales (days), through optimization of graph models that depict social networks and through eigenvalue optimization problems on contact-structure models that minimize rates of spread, and over longer time scales (weeks or months), that take into account behavioral response to interventions, such as fatigue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中,现有的流行病学模型进一步发展,以解决两个基本的挑战:异质性和不确定性。 流行病学模型是数学和计算工具,可以帮助指导公共卫生决策,以减轻传染病的发病率,死亡率和经济影响。可通过解决两个问题进一步提高其效力。首先,人们对风险的看法、社交网络规模、每天接触的次数、参与公共卫生措施的意愿以及对错误信息和虚假信息的接受程度各不相同。这种异质性是准确描述人类行为的一个主要挑战,这对于确保流行病学模型的预测准确性至关重要。其次,不确定性弥漫在所有流行病学建模中。所有模型都依赖于输入参数,例如无症状感染的比例,这些参数无法确定,但由于未知参数在合理范围内变化,模型预测可能会发生巨大变化。忽略关键输入参数中的这种内在不确定性可能导致对模型的过度自信的预测,进而导致不考虑适当范围的潜在结果的糟糕决策。这一模式的开发是与州和联邦一级的公共卫生官员组织合作进行的,以确保相关性和实用性。 该项目由数学和物理科学局(MPS)数学科学处(DMS)和社会、行为和经济科学局(SBE)社会和经济科学处(SES)共同资助。一系列统计和机器学习方法被用于公开可用的数据集,以拟合参数和非参数。与流行病学模型相关的人类行为的参数模型。先进的技术被开发出来并用于从接触追踪数据中引出人类行为,调整这些数据中固有的缺失数据和选择偏差。由此产生的分析提供输入到优化方法,旨在优化政策干预,同时明确占异质性和不确定性。定制优化方法通过优化描述社交网络的图模型和通过最小化扩散率的接触结构模型上的特征值优化问题,在短时间尺度(天)和较长时间尺度上进行优化(数周或数月),考虑到对干预措施的行为反应,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shane Henderson其他文献

The MOOSE fluid properties module
  • DOI:
    10.1016/j.cpc.2024.109407
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Guillaume Giudicelli;Christopher Green;Joshua Hansel;David Andrs;April Novak;Sebastian Schunert;Benjamin Spaude;Steven Isaacs;Matthias Kunick;Robert Salko;Shane Henderson;Lise Charlot;Alexander Lindsay
  • 通讯作者:
    Alexander Lindsay

Shane Henderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shane Henderson', 18)}}的其他基金

Stochastic Modeling and Optimization to Support Emergency Response Systems
支持应急响应系统的随机建模和优化
  • 批准号:
    2035086
  • 财政年份:
    2021
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Principles for Parallel Simulation Optimization
协作研究:并行仿真优化的设计原理
  • 批准号:
    1200315
  • 财政年份:
    2012
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Workshop: Simulation in Complex Service Systems; Montreal, Canada; July 18-20, 2011
研讨会:复杂服务系统仿真;
  • 批准号:
    1132167
  • 财政年份:
    2011
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Approximate Dynamic Programming, Simulation Optimization, and Emergency Services
近似动态规划、仿真优化和应急服务
  • 批准号:
    0758441
  • 财政年份:
    2008
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Inference, Analysis, and Assessment in Simulation Optimization
协作研究:仿真优化中的推理、分析和评估
  • 批准号:
    0800688
  • 财政年份:
    2008
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Workshop: Simulation for Better Decisions in an Uncertain World, July 5-7, 2007 at INSEAD in Fontainebleau, France
研讨会:在不确定的世界中进行更好决策的模拟,2007 年 7 月 5 日至 7 日,法国枫丹白露欧洲工商管理学院 (INSEAD)
  • 批准号:
    0703665
  • 财政年份:
    2007
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Structured Simulation Optimization and Analysis
结构化仿真优化与分析
  • 批准号:
    0400287
  • 财政年份:
    2004
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
CAREER: Resource Allocation Under Uncertainty
职业:不确定性下的资源分配
  • 批准号:
    0230528
  • 财政年份:
    2002
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Large Scale Simulation of Manufacturing and Communications Systems
制造和通信系统的大规模仿真
  • 批准号:
    0224884
  • 财政年份:
    2001
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Large Scale Simulation of Manufacturing and Communications Systems
制造和通信系统的大规模仿真
  • 批准号:
    0085165
  • 财政年份:
    2000
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant

相似海外基金

IHBEM: Using socioeconomic, behavioral and environmental data to understand disease dynamics: exploring COVID-19 outcomes in Oklahoma
IHBEM:利用社会经济、行为和环境数据了解疾病动态:探索俄克拉荷马州的 COVID-19 结果
  • 批准号:
    2327844
  • 财政年份:
    2024
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327816
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
RAISE: IHBEM: Mathematical Formulations of Human Behavior Change in Epidemic Models
RAISE:IHBEM:流行病模型中人类行为变化的数学公式
  • 批准号:
    2229819
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
RAISE: IHBEM: Inclusion of Challenges from Social Isolation Governed by Human Behavior through Transformative Research in Epidemiological Modeling
RAISE:IHBEM:通过流行病学模型的变革性研究纳入人类行为所带来的社会孤立的挑战
  • 批准号:
    2230117
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: Multidisciplinary Analysis of Vaccination Games for Equity (MAVEN)
合作研究:IHBEM:疫苗公平博弈的多学科分析 (MAVEN)
  • 批准号:
    2327791
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327814
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: Multidisciplinary Analysis of Vaccination Games for Equity (MAVEN)
合作研究:IHBEM:疫苗公平博弈的多学科分析 (MAVEN)
  • 批准号:
    2327790
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
  • 批准号:
    2327836
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了