ExpandQISE: Track 1: Fingerprinting and engineering tunable carbon-based quantum emitters in hexagonal boron nitride

ExpandQISE:轨道 1:六方氮化硼中的指纹识别和工程可调谐碳基量子发射器

基本信息

  • 批准号:
    2231278
  • 负责人:
  • 金额:
    $ 79.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical description:Emerging quantum technologies are poised to revolutionize science and everyday life, from finance and sensing to computation and medicine. At the core of these technologies is the quantum bit, or qubit. Hence, there is an intense search to find viable, robust qubit candidates. Certain defects, called deep-level defects, in electrically insulating materials are often described as “artificial atoms/molecules.” This is because under illumination they behave like atoms. Such defects are important amongst the solid-state implementations of qubits. In recent years, deep-level defects have been discovered in two-dimensional layered hexagonal boron nitride. Their identities, however, have largely remained a mystery, which has frustrated both the ability to make them and to control their properties. This joint theory-experiment project brings together a research team of scientists from the Howard University and University of Oregon to identify and tailor promising carbon-based deep-level defects in hexagonal boron nitride layers via a combination of theoretical and experimental defect-fingerprinting techniques. The work also impacts the needs of this field more broadly, by establishing the use of fingerprinting-techniques to identify deep-level defects in other 2D layered materials. The project directly engages graduate and undergraduate students from the two universities, boosting participation of underrepresented groups in quantum information science and engineering (QISE). Research and workforce development efforts, such as the establishment of new QISE courses at the two universities, a remotely accessible quantum testbed, and year-round skill-building mini-workshops for undergraduates are designed to help train and broaden participation of students in QISE.Technical description:Quantum information science and technologies are at the frontiers of modern science. These technologies require robust and long-lived qubits. Defect-based quantum emitters in wide-bandgap semiconductors have emerged as leading qubit-candidates for use in future quantum-information and quantum-sensing applications due to their potential for scalability and integration. In particular, two-dimensional hosts offer unparalleled opportunities for the near-deterministic placement of quantum emitters and tailoring of their properties via strain engineering. Notwithstanding these advantages, the full potential of these quantum emitters remains unrealized due to difficulties in uniquely identifying them, thereby thwarting attempts to engineer their photophysical and quantum properties. This project uses a novel combination of theoretical and experimental fingerprinting studies, which involve applying external stimuli to determine unique responses of different defects, thereby, identifying these defects uniquely. The strain-induced tailoring of different properties of quantum emitters to tune the target properties (such as emission frequencies) allows for their use in different quantum applications. Broader impacts on the field include a potential to use the fingerprinting-techniques to identify deep-level defects in other two-dimensional layered materials. The project also enables a broader range of frontier science studies and discoveries, including new quantum-based sensing modalities.The project is co-funded by The Office of Multidisciplinary Activities (OMA), and the Historically Black Colleges and Universities Undergraduate Program (HBCU-UP).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:新兴的量子技术将给科学和日常生活带来革命性的变化,从金融和传感到计算和医学。这些技术的核心是量子比特,或称量子比特。因此,人们正在紧张地寻找可行的、健壮的量子比特候选者。电绝缘材料中的某些缺陷,称为深能级缺陷,通常被描述为“人造原子/分子”。这是因为在光照下,它们的行为就像原子。这样的缺陷在量子比特的固态实现中是重要的。近年来,人们在二维层状六方氮化硼中发现了深能级缺陷。然而,它们的身份在很大程度上仍然是一个谜,这让制作它们和控制它们的财产的能力都受到了阻碍。这一联合理论-实验项目汇集了来自霍华德大学和俄勒冈大学的科学家研究团队,通过理论和实验缺陷指纹技术的结合,识别和定制六方氮化硼中有希望的碳基深能级缺陷。这项工作还通过建立指纹识别技术来识别其他2D层状材料中的深层缺陷,从而更广泛地影响了这一领域的需求。该项目直接吸引了两所大学的研究生和本科生,促进了量子信息科学与工程(QISE)中代表性不足的群体的参与。研究和劳动力发展努力,如在两所大学设立新的QISE课程,一个远程访问的量子试验台,以及为本科生开设的全年技能培养迷你讲习班,旨在帮助培训和扩大学生在QISE中的参与。技术描述:量子信息科学和技术处于现代科学的前沿。这些技术需要健壮且寿命长的量子比特。宽带隙半导体中基于缺陷的量子发射体由于其可扩展性和集成性的潜力,已成为未来量子信息和量子传感应用的主要量子比特候选者。特别是,二维宿主为近乎确定的量子发射体的放置和通过应变工程定制其特性提供了无与伦比的机会。尽管有这些优点,但由于难以唯一地识别这些量子发射体,这些量子发射体的全部潜力仍然没有实现,从而阻碍了设计它们的光物理和量子性质的尝试。该项目使用了一种理论和实验相结合的新的指纹研究,包括施加外部刺激来确定不同缺陷的独特反应,从而唯一地识别这些缺陷。应变诱导的量子发射体的不同属性的定制以调整目标属性(如发射频率),允许它们在不同的量子应用中使用。对该领域更广泛的影响包括使用指纹技术识别其他二维层状材料中的深层缺陷的可能性。该项目还支持更广泛的前沿科学研究和发现,包括新的基于量子的传感模型。该项目由多学科活动办公室(OMA)和历史上的黑人学院和大学本科项目(HBCU-UP)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Substrate-Induced Modulation of Quantum Emitter Properties in 2D Hexagonal Boron Nitride: Implications for Defect-Based Single Photon Sources in 2D Layers
二维六方氮化硼中量子发射体特性的衬底诱导调制:对二维层中基于缺陷的单光子源的影响
  • DOI:
    10.1021/acsanm.2c05233
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Narayanan, Sai Krishna;Dev, Pratibha
  • 通讯作者:
    Dev, Pratibha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pratibha Dev其他文献

Pratibha Dev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pratibha Dev', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Cyber Training on Materials Genome Innovation for Computational Software (CyberMAGICS)
合作研究:网络培训:实施:媒介:计算软件材料基因组创新网络培训 (Cyber​​MAGICS)
  • 批准号:
    2118099
  • 财政年份:
    2021
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
CAREER:Understanding the Effects of the Immediate Environment on Intrinsic Properties of 2D Crystals: From Fundamental Science to Real World Applications
职业:了解直接环境对二维晶体固有特性的影响:从基础科学到实际应用
  • 批准号:
    1752840
  • 财政年份:
    2018
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physics and Quantum Technology Applications of Defects in Silicon Carbide
合作研究:碳化硅缺陷的物理和量子技术应用
  • 批准号:
    1738076
  • 财政年份:
    2018
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了