Collaborative Research: Scalable & Communication Efficient Learning-Based Distributed Control

合作研究:可扩展

基本信息

  • 批准号:
    2231349
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Intelligent infrastructures (e.g., transportation, energy) are poised to play an integral role in the ongoing societal transition towards a more sustainable future. These systems must operate reliably, robustly, and efficiently in uncertain and dynamic environments. Feedback control is the enabling technology for providing such guarantees. Centralized control, where one system is controlled by a single decision maker, is a mature technology with well-developed theory and efficient algorithms, and has enabled engineering successes across many applications, such as commercial aviation, process control, and robotics. In contrast, distributed control, wherein multiple subsystems are controlled by multiple decision makers, is much more challenging. While the last ten years have produced a wealth of new theory and computational tools for addressing the distributed control problem, it is nevertheless observed that the practical impact of distributed control in emerging areas such as smart infrastructure remains minimal. This project seeks to address this issue and move distributed control from theory to practice by building a foundational and integrated theory of distributed learning-enabled control and approximated distributed optimization. On the educational front, the research outcomes of this project will be integrated into graduate-level courses on learning-enabled control (Penn) and distributed-optimization (Columbia). Longer term, this project aims to create a new community of researchers working at the intersection of distributed learning, control, and optimization, and departmental efforts will be leveraged to recruit a diverse group of PhD students for the project.This project is motivated by the observation that there remain significant barriers to the practical use of safety-constrained real-time distributed control: (i) Existing methods are much too slow for real-time control; (ii) Distributed optimal control has mainly focused on linear models while many systems of interest are nonlinear; and (iii) It is often assumed that high-quality structured models reflecting system topology are available. Thrusts will cover the full control engineering pipeline to address these gaps. In Thrust I, federated and statistical learning are incorporated into structured system identification. Thrust II seeks to speed up distributed predictive control by developing distributed imitation and federated learning tools. Finally, Thrust III focusses on the design of distributed controllers robust to uncertainty from learning, numerical methods, and communication failures. In contrast to existing work, this proposal offers the first integrated approach to designing controllers that can be realistically deployed to societal-scale systems. Experimental validation of developed methods will be conducted on robotic platforms at Penn and on data from an HBT-EP plasma fusion tokamak at Columbia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能基础设施(如交通、能源)将在朝着更可持续的未来进行的社会转型中发挥不可或缺的作用。这些系统必须在不确定和动态的环境中可靠、稳健和高效地运行。反馈控制是提供这种保证的使能技术。集中控制,即一个系统由单个决策者控制,是一种成熟的技术,具有完善的理论和有效的算法,并在许多应用中取得了工程上的成功,例如商业航空、过程控制和机器人。相比之下,分布式控制(其中多个子系统由多个决策者控制)更具挑战性。虽然过去十年已经产生了大量新的理论和计算工具来解决分布式控制问题,但人们仍然观察到分布式控制在智能基础设施等新兴领域的实际影响仍然很小。本项目旨在解决这一问题,并通过构建分布式学习控制和近似分布式优化的基础和集成理论,将分布式控制从理论推向实践。在教育方面,该项目的研究成果将被整合到研究生水平的学习控制(宾夕法尼亚大学)和分布式优化(哥伦比亚大学)课程中。从长远来看,该项目旨在创建一个新的研究人员社区,在分布式学习、控制和优化的交叉点上工作,各部门的努力将被用来为该项目招募不同的博士生群体。这个项目的动机是观察到实际使用安全约束的实时分布式控制仍然存在重大障碍:(i)现有方法对于实时控制来说太慢了;分布式最优控制主要集中于线性模型,而许多感兴趣的系统是非线性的;(iii)通常假设反映系统拓扑结构的高质量结构化模型是可用的。推力将覆盖整个控制工程管道,以解决这些差距。在推力1中,联邦学习和统计学习被纳入结构化系统识别。Thrust II旨在通过开发分布式模仿和联合学习工具来加速分布式预测控制。最后,推力III侧重于分布式控制器的设计,该控制器对来自学习、数值方法和通信故障的不确定性具有鲁棒性。与现有工作相比,该提案提供了第一个集成方法来设计可以实际部署到社会规模系统的控制器。已开发方法的实验验证将在宾夕法尼亚大学的机器人平台和哥伦比亚大学的hpt - ep等离子体聚变托卡马克的数据上进行。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolai Matni其他文献

Regret Analysis of Multi-task Representation Learning for Linear-Quadratic Adaptive Control
线性二次自适应控制多任务表示学习的遗憾分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruce Lee;Leonardo F. Toso;Thomas T. Zhang;James Anderson;Nikolai Matni
  • 通讯作者:
    Nikolai Matni
Why Change Your Controller When You Can Change Your Planner: Drag-Aware Trajectory Generation for Quadrotor Systems
当你可以改变你的规划器时,为什么要改变你的控制器:四旋翼系统的拖动感知轨迹生成
  • DOI:
    10.48550/arxiv.2401.04960
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanli Zhang;Anusha Srikanthan;Spencer Folk;Vijay Kumar;Nikolai Matni
  • 通讯作者:
    Nikolai Matni

Nikolai Matni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolai Matni', 18)}}的其他基金

Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
  • 批准号:
    2331880
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Towards a Theory of Robust Learning & Control for Safety-Critical Autonomous Systems
职业生涯:迈向稳健学习理论
  • 批准号:
    2045834
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CPS: Medium: Robust Learning for Perception-Based Autonomous Systems
CPS:中:基于感知的自治系统的鲁棒学习
  • 批准号:
    2038873
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了