Uncertainties in high precision radiation therapy: Impact of deformable image registration methods and of delineation variations on the accumulating dose distribution

高精度放射治疗的不确定性:可变形图像配准方法和轮廓变化对累积剂量分布的影响

基本信息

项目摘要

In recent years, technical developments in radiation therapy have resulted in ever more precise dose application techniques; hence, modern techniques are also referred to as high-precision radiotherapy. The physical dose can be applied precisely to the tumor in the defined target volumes while sparing the adjacent organs at risk from irradiation.Many developments were necessary to achieve this improved precision. Improved dose calculation and optimization methods allowed for the computer-assisted planning of complex irradiation plans that can also cover convex and irregular shaped target volumes. The fusion of imaging devices with irradiation devices allowed for a reduction in positioning uncertainties and made it possible to visualize anatomical changes during radiation therapy. Today, image processing methods help to relocate target volumes and organs at risk at every point during the treatment course; this allows adapting the irradiation plan precisely to temporal changes. However, using these methods, the radiation therapy chain has also become more complex. Even though the respective steps in the treatment course carry only small uncertainties, the uncertainties add up during the iterative use of the methods in the therapy course.To assess the quality of the entire treatment course, or to be able to intervene in the treatment course e.g. by employing various correction strategies, it is required to take the accumulated uncertainties into consideration. Therefore, it is important to simulate the entire treatment course and to include the occurring uncertainties.It is still a challenge to perform such a simulation. Especially the determination of temporal variable deformations through deformable image registration methods is hard to validate. Different methods result in different results for the same input images; in addition, the quality of the methods depends on the context in which they are used. These uncertainties will have to be reflected in the uncertainties of the accumulated dose distribution.The goal of this research project is to integrate common image registration methods with a treatment planning system. We plan to investigate image registration methods regarding their uncertainties in dose distribution by developing a new virtual patient and employing widely used evaluation methods. This will enable us to determine the image registration methods most suited for usage in radiation therapy and to evaluate the propagation of uncertainties in the accumulated dose distribution. With this we can e.g. compare competing adaptive correction strategies, or determine the potentially remaining dose tolerance in case of planning a re-irradiation of previously treated patients.
近年来,放射治疗的技术发展导致了更精确的剂量应用技术;因此,现代技术也被称为高精度放射治疗。物理剂量可以精确地施加到肿瘤的定义的目标体积,同时保护邻近器官的辐射风险。许多发展是必要的,以实现这一改进的精度。改进的剂量计算和优化方法允许计算机辅助规划复杂的照射计划,也可以覆盖凸形和不规则形状的靶体积。成像设备与辐照设备的融合可以减少定位的不确定性,并使放射治疗期间的解剖学变化可视化成为可能。如今,图像处理方法有助于在治疗过程中的每个点重新定位靶体积和有风险的器官;这允许精确地调整照射计划以适应时间变化。然而,使用这些方法,放射治疗链也变得更加复杂。即使治疗过程中的各个步骤只带有很小的不确定性,但是在治疗过程中反复使用这些方法的过程中,不确定性会累积起来。为了评估整个治疗过程的质量,或者能够通过采用各种校正策略来干预治疗过程,需要考虑累积的不确定性。因此,对整个治疗过程进行仿真并考虑到可能出现的不确定性是非常重要的,而进行这样的仿真仍然是一个挑战。特别是通过可变形图像配准方法确定时间可变变形很难验证。对于相同的输入图像,不同的方法会产生不同的结果;此外,方法的质量取决于使用它们的上下文。这些不确定性将不得不反映在累积剂量distribution.The目标的不确定性的研究项目是将共同的图像配准方法与治疗计划系统。我们计划通过开发一个新的虚拟患者和采用广泛使用的评估方法,研究图像配准方法的剂量分布的不确定性。这将使我们能够确定最适合用于放射治疗的图像配准方法,并评估累积剂量分布中不确定性的传播。这样,我们可以比较竞争性自适应校正策略,或者在计划对先前治疗的患者进行再照射的情况下确定潜在的剩余剂量耐受性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Handling images of patient postures in arms up and arms down position using a biomechanical skeleton model
使用生物力学骨骼模型处理手臂向上和手臂向下位置的患者姿势图像
Abstract: Articulated Head and Neck Patient Model for Adaptive Radiotherapy
摘要:用于适应性放射治疗的铰接头颈患者模型
  • DOI:
    10.1007/978-3-662-54345-0_58
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teske H;Bartelheimer K;Meis J;Stoiber EM;Bendl R;Giske K
  • 通讯作者:
    Giske K
Abstract: Effiziente Visualisierung von Vektorfeldern in der Strahlentherapie
摘要:放射治疗中矢量场的高效可视化
  • DOI:
    10.1007/978-3-662-54345-0_52
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meis J;Teske H;Giske K
  • 通讯作者:
    Giske K
Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration
  • DOI:
    10.1088/1361-6560/aa69b6
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    H. Teske;K. Bartelheimer;Jan Meis;R. Bendl;E. Stoiber;K. Giske
  • 通讯作者:
    H. Teske;K. Bartelheimer;Jan Meis;R. Bendl;E. Stoiber;K. Giske
Tissue-specific transformation model for CT-images
CT 图像的组织特异性变换模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Kristina Giske其他文献

Dr. Kristina Giske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
  • 批准号:
    10876727
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits
将 MR 引导聚焦超声系统用于人体首个疼痛回路精确神经调节
  • 批准号:
    10805159
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Imaging, Dosimetry and Radiobiology for α-particle Emitter Radiopharmaceutical Therapy
α 粒子发射器放射性药物治疗的成像、剂量测定和放射生物学
  • 批准号:
    10713709
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
  • 批准号:
    10577186
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting Tryptophan Metabolism in Rectal Cancer
靶向直肠癌中的色氨酸代谢
  • 批准号:
    10754178
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
  • 批准号:
    10741022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting tumor microenvironment by nanoimmunodrugs for glioma treatment
纳米免疫药物靶向肿瘤微环境治疗神经胶质瘤
  • 批准号:
    10743942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Leveraging Gα12 signaling to treat glioblastoma
利用 Gα12 信号传导治疗胶质母细胞瘤
  • 批准号:
    10649241
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了