RAPID: Data Fusion for Structural Assessment of the Fern Hollow Bridge Replacement During Construction
RAPID:用于施工期间蕨类空心桥更换结构评估的数据融合
基本信息
- 批准号:2232206
- 负责人:
- 金额:$ 14.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent collapse of the Fern Hollow bridge in Pittsburgh, Pennsylvania, highlighted how proactive assessment and maintenance strategies are required to operate the large, interconnected infrastructure of the country. This Grant for Rapid Response Research (RAPID) award will focus on obtaining high-fidelity three-dimensional models of the bridge replacement throughout every major construction phase. Each sequential scan will be collected in the same reference system, to allow for consecutive reconstructions to be compared quantitatively. Since the landscape will evolve rapidly, this unique data will allow for analyses to assess the fast-paced dynamic changes in structural response. The obtained data and the related analyses bring the potential to significantly aid further technology development towards design for rapid construction as well as efficient bridge monitoring and non-destructive assessment of structural systems. This project will benefit society by creating novel science and technology for (i) the acquisition of high-resolution data from a bridge by means of different sensing techniques, (ii) data fusion approaches to interpret such information, and (iii) the translation of such information to structural assessment of the resisting elements over time. There is clear potential for this research to serve as a benchmark to improve the maintenance of aging infrastructure in a timely fashion, while also providing valuable information on the reconstruction of a collapsed bridge.The specific goal of the research is to characterize the time-dependent evolution of the structural response in pre-stressed reinforced concrete bridges during construction. The data will be acquired by the use of both laser-based and camera sensors mounted on unmanned aerial systems. Simultaneous Localization and Mapping algorithms will be employed for the fusion of the two datasets and subsequent reconstruction of the three-dimensional models. The research hypothesis is that the richer datasets obtained by means of the data fusion algorithms will enable more accurate semantic segmentation of the reconstructed scenes, by leveraging the high spatial resolution of the laser-based measurement and the color information obtained from the camera sensors. This project provides the opportunity to advance both the use and application of measurement technology and the combination of such technology with inverse analysis methods. The data will be directly usable to create novel “scan-to-analysis” digital tools and enable remarkable advancements in structural health monitoring and prognosis of pre-stressed reinforced concrete bridges, with specific attention devoted to incorporating construction information in the system assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近宾夕法尼亚州匹兹堡的Fern Hollow大桥倒塌,突出表明了如何积极主动地评估和维护策略,以运营该国大型互联基础设施。该快速反应研究(RAPID)奖将专注于在每个主要施工阶段获得桥梁更换的高保真三维模型。将在相同的参考系统中收集每次连续扫描,以便对连续重建进行定量比较。由于景观将迅速演变,这种独特的数据将允许分析,以评估结构响应的快节奏动态变化。所获得的数据和相关的分析带来了潜在的显着帮助进一步的技术发展,设计快速施工以及有效的桥梁监测和结构系统的非破坏性评估。该项目将通过创造新的科学和技术来造福社会,(i)通过不同的传感技术从桥梁获取高分辨率数据,(ii)数据融合方法来解释这些信息,以及(iii)将这些信息转化为抵抗元素的结构评估。有明确的潜力,这项研究作为一个基准,以改善维护老化的基础设施,及时的方式,同时也提供了宝贵的信息,重建一个倒塌的bridge.The研究的具体目标是表征随时间变化的结构响应在预应力钢筋混凝土桥梁施工过程中的演变。这些数据将通过使用安装在无人驾驶航空系统上的激光传感器和摄像机传感器来获取。同时定位和映射算法将用于两个数据集的融合和随后的三维模型的重建。研究假设是,通过数据融合算法获得的更丰富的数据集将能够通过利用基于激光的测量的高空间分辨率和从相机传感器获得的颜色信息,对重建的场景进行更准确的语义分割。该项目提供了一个机会,以促进测量技术的使用和应用,以及这种技术与反分析方法的结合。这些数据将直接用于创建新型的“扫描分析”数字化工具,并在预应力钢筋混凝土桥梁的结构健康监测和预测方面取得显着进展,该奖项反映了NSF的法定使命,并被认为值得通过利用基金会的智力价值和更广泛的影响进行评估来支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Fascetti其他文献
Torsional repair of damaged single-box multi-cell composite box-girder with corrugated steel webs using CFRP. Part Ⅰ: Experimental investigation
- DOI:
10.1016/j.compstruct.2022.115920 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Yingbo Zhu;Kongjian Shen;Shui Wan;John C. Brigham;Alessandro Fascetti;Peng Zhou - 通讯作者:
Peng Zhou
Multiscale lattice discrete particle modeling of steel-concrete composite column bases under pull-out and cyclic loading conditions
钢-混凝土组合柱脚在拔出和循环加载条件下的多尺度格子离散粒子建模
- DOI:
10.1016/j.compstruc.2025.107705 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.800
- 作者:
Yingbo Zhu;Ahmad Hassan;Amit Kanvinde;Alessandro Fascetti - 通讯作者:
Alessandro Fascetti
Backward erosion piping in geotechnical infrastructure: a rate process perspective
岩土基础设施中的反向侵蚀管道:速率过程视角
- DOI:
10.1680/jgeot.23.00259 - 发表时间:
2024-04-04 - 期刊:
- 影响因子:5.200
- 作者:
Zhijie Wang;Caglar Oskay;Alessandro Fascetti - 通讯作者:
Alessandro Fascetti
Data-driven multiscale lattice discrete particle model for digital twin modeling of concrete structures
用于混凝土结构数字孪生建模的数据驱动多尺度晶格离散粒子模型
- DOI:
10.1016/j.cma.2025.118183 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:7.300
- 作者:
Yingbo Zhu;John Brigham;Alessandro Fascetti - 通讯作者:
Alessandro Fascetti
Alessandro Fascetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Fascetti', 18)}}的其他基金
CLIMA: A Digital Twin Modeling Framework for Climate Adaptive Vertical Infrastructure
CLIMA:气候适应垂直基础设施的数字孪生建模框架
- 批准号:
2332246 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
- 批准号:
2327374 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
Ion-atom collision data for fusion energy, hadron therapy and astrophysics
用于聚变能、强子治疗和天体物理学的离子原子碰撞数据
- 批准号:
DP240101210 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Discovery Projects
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Continuing Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323082 - 财政年份:2024
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
Intelligent sensing and data fusion in a smart environment for human activity recognition to support self-management of long-term conditions
智能环境中的智能传感和数据融合,用于人类活动识别,支持长期状况的自我管理
- 批准号:
2888131 - 财政年份:2023
- 资助金额:
$ 14.15万 - 项目类别:
Studentship
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
- 批准号:
2311297 - 财政年份:2023
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant
Fusion Pursuit for Pattern-Mixture Models with Application to Longitudinal Studies with Nonignorable Missing Data
模式混合模型的融合追踪及其在不可忽略缺失数据纵向研究中的应用
- 批准号:
2310217 - 财政年份:2023
- 资助金额:
$ 14.15万 - 项目类别:
Continuing Grant
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
- 批准号:
2401748 - 财政年份:2023
- 资助金额:
$ 14.15万 - 项目类别:
Standard Grant